We propose a constitutive relation for finite deformations of nearly incompressible isotropic viscoelastic rubbery adhesives assuming that the Cauchy stress tensor can be written as the sum of elastic and viscoelastic parts. The former is derived from a stored energy function and the latter from a hereditary type integral. Using Ogden’s expression for the strain energy density and the Prony series for the viscoelastic shear modulus, values of material parameters are estimated by using experimental data for uniaxial tensile and compressive cyclic deformations at different constant engineering axial strain rates. It is found that values of material parameters using the loading part of the first cycle, the complete first cycle, and the complete two loading cycles are quite different. Furthermore, the constitutive relation with values of material parameters determined from the monotonic loading during the first cycle of deformations cannot well predict even deformations during the unloading portion of the first cycle. The developed constitutive relation is used to study low-velocity impact of polymethylmethacrylate (PMMA)/adhesive/polycarbonate (PC) laminate. The three sets of values of material parameters for the adhesive seem to have a negligible effect on the overall deformations of the laminate. It is attributed to the fact that peak strain rates in the severely deforming regions are large, and the corresponding stresses are essentially unaffected by the long time response of the adhesive.

References

References
1.
Hepburn
,
C.
,
1982
,
Polyurethane Elastomers
,
Applied Science Publishers
,
London
, UK.
2.
Cooper
,
S. L.
, and
Tobolsky
,
A. V.
,
1966
, “
Properties of Linear Elastomeric Polyurethanes
,”
J. Appl. Polym. Sci.
,
10
(
12
), pp.
1837
1844
.10.1002/app.1966.070101204
3.
Sanchez-Adsuar
,
M. S.
, and
Martin-Martinez
,
J. M.
,
2000
, “
Structure, Composition, and Adhesion Properties of Thermoplastic Polyurethane Adhesives
,”
J. Adhes. Sci. Technol.
,
14
(
8
), pp.
1035
1055
.10.1163/156856100743068
4.
Yi
,
J.
,
Boyce
,
M. C.
,
Lee
,
G. F.
, and
Balizer
,
E.
,
2006
, “
Large Deformation Rate-Dependent Stress–Strain Behavior of Polyurea and Polyurethanes
,”
Polymer
,
47
(
1
), pp.
319
329
.10.1016/j.polymer.2005.10.107
5.
Petrovic
,
Z. S.
, and
Ferguson
,
J.
,
1991
, “
Polyurethane Elastomers
,”
Prog. Polym. Sci.
,
16
(
5
), pp.
695
836
.10.1016/0079-6700(91)90011-9
6.
Budinski
,
K. G.
, and
Budinski
,
M. K.
,
2009
, Engineering Materials: Properties and Selection, 9th ed., Prentice-Hall, Upper Saddle River, NJ.
7.
Tasdemirci
,
A.
,
Hall
, I
. W.
,
Gama
,
B. A.
, and
Guiden
,
M.
,
2004
, “
Stress Wave Propagation Effects in Two- and Three-Layered Composite Materials
,”
J. Compos. Mater.
,
38
(
12
), pp.
995
1009
.10.1177/0021998304040564
8.
Kihara
,
K.
,
Isono
,
H.
,
Yamabe
,
H.
, and
Sugibayashi
,
T.
,
2003
, “
A Study and Evaluation of the Shear Strength of Adhesive Layers Subjected to Impact Loads
,”
Int. J. Adhes. Adhes.
,
23
(
4
), pp.
253
259
.10.1016/S0143-7496(03)00004-6
9.
Sarva
,
S. S.
,
Deschanel
,
S.
,
Boyce
,
M. C.
, and
Chen
,
W. N.
,
2007
, “
Stress–Strain Behavior of a Polyurea and a Polyurethane From Low to High Strain Rates
,”
Polymer
,
48
(
8
), pp.
2208
2213
.10.1016/j.polymer.2007.02.058
10.
Rivlin
,
R.
, and
Saunders
,
D.
,
1997
,
Large Elastic Deformations of Isotropic Materials
(Collected Papers of R. S. Rivlin),
Springer
, New York, pp. 318–351.
11.
Ericksen
,
J. L.
,
1954
, “
Deformations Possible in Every Isotropic, Incompressible, Perfectly Elastic Body
,”
Z. Angew. Math. Phys. (ZAMP)
,
5
(
6
), pp.
466
489
.10.1007/BF01601214
12.
Ogden
,
R.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
326
(
1567
), pp.
565
584
.10.1098/rspa.1972.0026
13.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A 3-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic-Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
14.
Coleman
,
B. D.
, and
Noll
,
W.
,
1961
, “
Foundations of Linear Viscoelasticity
,”
Rev. Mod. Phys.
,
33
(
2
), pp.
239
249
.10.1103/RevModPhys.33.239
15.
Christensen
,
R. M.
,
1980
, “
A Non-Linear Theory of Viscoelasticity for Application to Elastomers
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
762
768
.10.1115/1.3153787
16.
Qi
,
H. J.
, and
Boyce
,
M. C.
,
2005
, “
Stress–Strain Behavior of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
), pp.
817
839
.10.1016/j.mechmat.2004.08.001
17.
Boyce
,
M. C.
,
Kear
,
K.
,
Socrate
,
S.
, and
Shaw
,
K.
,
2001
, “
Deformation of Thermoplastic Vulcanizates
,”
J. Mech. Phys. Solids
,
49
(
5
), pp.
1073
1098
.10.1016/S0022-5096(00)00066-1
18.
Boyce
,
M. C.
,
Socrate
,
S.
,
Kear
,
K.
,
Yeh
,
O.
, and
Shaw
,
K.
,
2001
, “
Micromechanisms of Deformation and Recovery in Thermoplastic Vulcanizates
,”
J. Mech. Phys. Solids
,
49
(
6
), pp.
1323
1342
.10.1016/S0022-5096(00)00075-2
19.
Antoine
,
G. O.
, and
Batra
,
R. C.
,
2014
, “
Low Speed Impact of Laminated Polymethylmethacrylate/Adhesive/Polycarbonate Plates
,”
Compos. Struct.
,
116
, pp.
193
210
.10.1016/j.compstruct.2014.04.006
20.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Dover Publications
, Mineola, NY.
21.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A General Theory of an Elastic-Plastic Continuum
,”
Arch. Ration. Mech. Anal.
,
18
(
4
), pp.
251
281
.10.1007/BF00251666
22.
Batra
,
R. C.
,
2006
,
Elements of Continuum Mechanics, Education Series
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
23.
Stenzler
,
J. S.
,
2009
, “Impact Mechanics of PMMA/PC Multi-Laminates With Soft Polymer Interlayers,” M.Sc. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
24.
Bapat
,
C. N.
, and
Batra
,
R. C.
,
1984
, “
Finite Plane-Strain Deformations of Nonlinear Viscoelastic Rubber-Covered Rolls
,”
Int. J. Numer. Methods Eng.
,
20
(
10
), pp.
1911
1927
.10.1002/nme.1620201011
25.
Batra
,
R. C.
, and
Yu
,
J. H.
,
1999
, “
Linear Constitutive Relations in Isotropic Finite Viscoelasticity
,”
J. Elast.
,
55
(
1
), pp.
73
77
.10.1023/A:1007690105130
26.
Yu
,
J. H.
, and
Batra
,
R. C.
,
2000
, “
Constrained Layer Damping in Finite Shearing Deformations
,”
J. Sound Vib.
,
229
(
2
), pp.
445
452
.10.1006/jsvi.1999.2364
27.
Batra
,
R. C.
, and
Yu
,
J. H.
,
2000
, “
Torsion of a Viscoelastic Cylinder
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
424
427
.10.1115/1.1303824
28.
Batra
,
R. C.
, and
Kim
,
C. H.
,
1990
, “
Effect of Viscoplastic Flow Rules on the Initiation and Growth of Shear Bands at High-Strain Rates
,”
J. Mech. Phys. Solids
,
38
(
6
), pp.
859
874
.10.1016/0022-5096(90)90043-4
29.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1982
, “
Penalty-Function Formulations for Incompressible Non-Linear Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
,
35
(
1
), pp.
107
118
.10.1016/0045-7825(82)90035-4
30.
Kröner
,
E.
,
1959
, “
Allgemeine Kontinuumstheorie Der Versetzungen Und Eigenspannungen
,”
Arch. Ration. Mech. Anal.
,
4
(
1
), pp.
273
334
.10.1007/BF00281393
31.
Lee
,
E. H.
,
1969
, “
Elastic–Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.10.1115/1.3564580
You do not currently have access to this content.