In applying the elastic shell models to monolayer or few-layer two-dimensional (2D) materials, an effective thickness has to be defined to capture their tensile and out-of-plane mechanical behaviors. This thin-shell thickness differs from the interlayer distance of their layer-by-layer assembly in the bulk and is directly related to the Föppl–von Karman number that characterizes the mechanism of nonlinear structural deformation. In this work, we assess such a definition for a wide spectrum of 2D crystals of current interest. Based on first-principles calculations, we report that the discrepancy between the thin-shell thickness and interlayer distance is weakened for 2D materials with lower tensile stiffness, higher bending stiffness, or more number of atomic layers. For multilayer assembly of 2D materials, the tensile and bending stiffness have different scaling relations with the number of layers, and the thin-shell thickness per layer approaches the interlayer distance as the number of layers increases. These findings lay the ground for constructing continuum models of 2D materials with both tensile and bending deformation.

References

References
1.
Butler
,
S. Z.
,
Hollen
,
S. M.
,
Cao
,
L.
,
Cui
,
Y.
,
Gupta
,
J. A.
,
Gutiérrez
,
H. R.
,
Heinz
,
T. F.
,
Hong
,
S. S.
,
Huang
,
J.
,
Ismach
,
A. F.
,
Johnston-Halperin
,
E.
,
Kuno
,
M.
,
Plashnitsa
,
V. V.
,
Robinson
,
R. D.
,
Ruoff
,
R. S.
,
Salahuddin
,
S.
,
Shan
,
J.
,
Shi
,
L.
,
Spencer
,
M. G.
,
Terrones
,
M.
,
Windl
,
W.
, and
Goldberger
,
J. E.
,
2013
, “
Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
,”
ACS Nano
,
7
(
4
), pp.
2898
2926
.
2.
Xu
,
Z.
,
2011
, “
Nano-Engineering of Graphene and Related Materials
,”
Physics and Applications of Graphene
,
S.
Mikhailov
, ed.,
Intech
,
Rijeka, Croatia
.
3.
Heyde
,
M.
,
Shaikhutdinov
,
S.
, and
Freund
,
H. J.
,
2012
, “
Two-Dimensional Silica: Crystalline and Vitreous
,”
Chem. Phys. Lett.
,
550
, pp.
1
7
.
4.
Splendiani
,
A.
,
Sun
,
L.
,
Zhang
,
Y.
,
Li
,
T.
,
Kim
,
J.
,
Chim
,
C. Y.
,
Galli
,
G.
, and
Wang
,
F.
,
2010
, “
Emerging Photoluminescence in Monolayer MoS2
,”
Nano Lett.
,
10
(
4
), pp.
1271
1275
.
5.
Zhu
,
Z.
, and
Tománek
,
D.
,
2014
, “
Semiconducting Layered Blue Phosphorus: A Computational Study
,”
Phys. Rev. Lett.
,
112
(
17
), p.
176802
.
6.
Yang
,
C.
,
Yu
,
Z.
,
Lu
,
P.
,
Liu
,
Y.
,
Ye
,
H.
, and
Gao
,
T.
,
2014
, “
Phonon Instability and Ideal Strength of Silicene Under Tension
,”
Comput. Mater. Sci.
,
95
, pp.
420
428
.
7.
Michel
,
K. H.
, and
Verberck
,
B.
,
2009
, “
Theory of Elastic and Piezoelectric Effects in Two-Dimensional Hexagonal Boron Nitride
,”
Phys. Rev. B
,
80
(
22
), p.
224301
.
8.
Michel
,
K. H.
, and
Verberck
,
B.
,
2011
, “
Phonon Dispersions and Piezoelectricity in Bulk and Multilayers of Hexagonal Boron Nitride
,”
Phys. Rev. B
,
83
(
11
), p.
115328
.
9.
Xue
,
K.
, and
Xu
,
Z.
,
2010
, “
Strain Effects on Basal-Plane Hydrogenation of Graphene: A First-Principles Study
,”
Appl. Phys. Lett.
,
96
(
6
), p.
063103
.
10.
Xu
,
Z.
, and
Buehler
,
M. J.
,
2012
, “
Heat Dissipation at a Graphene-Substrate Interface
,”
J. Phys.: Condens. Matter
,
24
(
47
), p.
475305
.
11.
Duerloo
,
K.-A. N.
,
Li
,
Y.
, and
Reed
,
E. J.
,
2014
, “
Structural Phase Transitions in Two-Dimensional Mo- and W-Dichalcogenide Monolayers
,”
Nat. Commun.
,
5
, p.
4214
.
12.
Wei
,
N.
,
Peng
,
X.
, and
Xu
,
Z.
,
2014
, “
Understanding Water Permeation in Graphene Oxide Membranes
,”
ACS Appl. Mater. Interfaces
,
6
(
8
), pp.
5877
5883
.
13.
Wang
,
L.
,
Zheng
,
Q.
,
Liu
,
J. Z.
, and
Jiang
,
Q.
,
2005
, “
Size Dependence of the Thin-Shell Model for Carbon Nanotubes
,”
Phys. Rev. Lett.
,
95
(
10
), pp.
105501
105504
.
14.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
(
24
), p.
245413
.
15.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1986
,
Theory of Elasticity
,
Butterworth-Heinemann
,
Oxford, UK
.
16.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
2514
.
17.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2014
, “
Defects Controlled Wrinkling and Topological Design in Graphene
,”
J. Mech. Phys. Solids
,
67
, pp.
2
13
.
18.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1997
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
78
(
7
), p.
1396
.
19.
Blöchl
,
P. E.
,
1994
, “
Projector Augmented-Wave Method
,”
Phys. Rev. B
,
50
(
24
), pp.
17953
17979
.
20.
Grimme
,
S.
,
Antony
,
J.
,
Ehrlich
,
S.
,
Krieg
,
H.
,
2010
, “
A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu
,”
J. Chem. Phys.
,
132
(
15
), p.
154104
.
21.
Togo
,
A.
, and
Tanaka
,
I.
,
2005
, “
First Principles Phonon Calculations in Materials Science
,”
Scr. Mater.
,
108
, pp.
1
5
.
22.
Karssemeijer
,
L. J.
, and
Fasolino
,
A.
,
2011
, “
Phonons of Graphene and Graphitic Materials Derived From the Empirical Potential LCBOPII
,”
Surf. Sci.
,
605
(
17–18
), pp.
1611
1615
.
23.
Liu
,
F.
,
Ming
,
P.
, and
Li
,
J.
,
2007
, “
Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension
,”
Phys. Rev. B
,
76
(
6
), p.
064120
.
24.
Koskinen
,
P.
, and
Kit
,
O. O.
,
2010
, “
Approximate Modeling of Spherical Membranes
,”
Phys. Rev. B
,
82
(
23
), p.
235420
.
25.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From Ab-Initio Computations
,”
Phys. Rev. B
,
64
(
23
), p.
235406
.
26.
Hod
,
O.
,
2012
, “
Graphite and Hexagonal Boron-Nitride Have the Same Interlayer Distance. Why
?"
J. Chem. Theory Comput.
,
8
(
4
), pp.
1360
1369
.
27.
Zhao
,
H. J.
,
2012
, “
Strain and Chirality Effects on the Mechanical and Electronic Properties of Silicene and Silicane Under Uniaxial Tension
,”
Phys. Lett. A
,
376
(
46
), pp.
3546
3550
.
28.
Fu
,
H. X.
,
Zhang
,
J.
,
Ding
,
Z. J.
,
Li
,
H.
, and
Meng
,
S.
,
2014
, “
Stacking-Dependent Electronic Structure of Bilayer Silicene
,”
Appl. Phys. Lett.
,
104
(
13
), p.
131904
.
29.
Molina-Sánchez
,
A.
, and
Wirtz
,
L.
,
2011
, “
Phonons in Single-Layer and Few-Layer MoS2 and WS2
,”
Phys. Rev. B
,
84
(
15
), p.
155413
.
30.
Li
,
T. S.
,
2012
, “
Ideal Strength and Phonon Instability in Single-Layer MoS2
,”
Phys. Rev. B
,
85
(
23
), p.
235407
.
31.
Jiang
,
J. W.
,
Qi
,
Z.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2013
, “
Elastic Bending Modulus of Single-Layer Molybdenum Disulfide (MoS2): Finite Thickness Effect
,”
Nanotechnology
,
24
(
43
), p.
435705
.
32.
Radisavljevic
,
B.
,
Radenovic
,
A.
,
Brivio
,
J.
,
Giacometti
,
V.
, and
Kis
,
A.
,
2011
, “
Single-Layer MoS2 Transistors
,”
Nat. Nanotechnol.
,
6
(
3
), pp.
147
150
.
33.
Wei
,
Q.
, and
Peng
,
X.
,
2014
, “
Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus
,”
Appl. Phys. Lett.
,
104
(
25
), p.
251915
.
34.
Wang
,
Z.
, and
Feng
,
P. X. L.
,
2015
, “
Design of Black Phosphorus 2D Nanomechanical Resonators by Exploiting the Intrinsic Mechanical Anisotropy
,”
2D Mater.
,
2
(
2
), p.
021001
.
35.
Guan
,
J.
,
Jin
,
Z.
,
Zhu
,
Z.
,
Chuang
,
C.
,
Jin
,
B.-Y.
, and
Tománek
,
D.
,
2014
, “
Local Curvature and Stability of Two-Dimensional Systems
,”
Phys. Rev. B
,
90
(
24
), p.
245403
.
36.
Zhang
,
D. B.
,
Akatyeva
,
E.
, and
Dumitrică
,
T.
,
2011
, “
Bending Ultrathin Graphene at the Margins of Continuum Mechanics
,”
Phys. Rev. Lett.
,
106
(
25
), p.
255503
.
37.
Liu
,
Y.
,
Xu
,
Z.
, and
Zheng
,
Q.
,
2011
, “
The Interlayer Shear Effect on Graphene Multilayer Resonators
,”
J. Mech. Phys. Solids
,
59
(
8
), pp.
1613
1622
.
You do not currently have access to this content.