Nonviscously damped vibrating systems are characterized by dissipative mechanisms depending on the time-history of the response velocity, introduced in the physical models using convolution integrals involving hereditary kernel functions. One of the most used damping viscoelastic models is the Biot's model, whose hereditary functions are assumed to be exponential kernels. The free-motion equations of these types of nonviscous systems lead to a nonlinear eigenvalue problem enclosing certain number of the so-called nonviscous modes with nonoscillatory nature. Traditionally, the nonviscous modes (eigenvalues and eigenvectors) for nonproportional systems have been computed using the state-space approach, computationally expensive. In this paper, we address this problem developing a new method, computationally more efficient than that based on the state-space approach. It will be shown that real eigenvalues and eigenvectors of viscoelastically damped system can be obtained from a linear eigenvalue problem with the same size as the physical system. The numerical approach can even be enhanced to solve highly damped problems. The theoretical results are validated using a numerical example.

References

References
1.
Golla
,
D.
, and
Hughes
,
P.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time-Domain, Finite-Element Formulation
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
897
906
.
2.
Biot
,
M.
,
1954
, “
Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena
,”
J. Appl. Phys.
,
25
(
11
), pp.
1385
1391
.
3.
Biot
,
M.
,
1955
, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
,
97
(
6
), pp.
1463
1469
.
4.
Biot
,
M.
,
1958
, “
Linear Thermodynamics and the Mechanics of Solids
,” Proceedings of the Third U.S. National Congress on Applied Mechanics, Providence, RI, June 11–14,
ASME
,
New York
, pp. 1–18.
5.
Flugge
,
W.
,
1975
,
Viscoelasticity
,
2nd ed.
,
Springer-Verlag
, New York.
6.
Nashif
,
A.
,
Jones
,
D.
, and
Henderson
,
J.
,
1985
,
Vibration Damping
,
Wiley
, Chichester, UK.
7.
Jones
,
D. I.
,
2001
,
Handbook of Viscoelastic Vibration Damping
,
Wiley
, Chichester, UK.
8.
Sun
,
C.
, and
Lu
,
Y.
,
1995
,
Vibration Damping of Structural Elements
,
Prentice Hall
, Englewood Cliffs, NJ.
9.
Woodhouse
,
J.
,
1998
, “
Linear Damping Models for Structural Vibration
,”
J. Sound Vib.
,
215
(
3
), pp.
547
569
.
10.
Adhikari
,
S.
,
2001
, “
Eigenrelations for Non-Viscously Damped Systems
,”
AIAA J.
,
39
(
8
), pp.
1624
1630
.
11.
Adhikari
,
S.
,
2002
, “
Dynamics of Non-Viscously Damped Linear Systems
,”
J. Eng. Mech.
,
128
(
3
), pp.
328
339
.
12.
Muravyov
,
A.
, and
Hutton
,
S.
,
1997
, “
Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
684
691
.
13.
Adhikari
,
S.
,
2009
, “
Experimental Identification of Generalized Proportional Viscous Damping Matrix
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
11008
.
14.
Adhikari
,
S.
, and
Pascual
,
B.
,
2011
, “
Iterative Methods for Eigenvalues of Viscoelastic Systems
,”
ASME J. Vib. Acoust.
,
133
(
2
), p.
021002
.
15.
Lázaro
,
M.
, and
Pérez-Aparicio
,
J. L.
,
2013
, “
Multiparametric Computation of Eigenvalues for Linear Viscoelastic Structures
,”
Comput. Struct.
,
117
, pp.
67
81
.
16.
Lázaro
,
M.
, and
Pérez-Aparicio
,
J. L.
,
2013
, “
Dynamic Analysis of Frame Structures With Free Viscoelastic Layers: New Closed-Form Solutions of Eigenvalues and a Viscous Approach
,”
Eng. Struct.
,
54
, pp.
69
81
.
17.
Lázaro
,
M.
,
2013
, “
The Eigenvalue Problem in Linear Viscoelastic Structures: New Numerical Approach and the Equivalent Viscous Model
,” Ph.D. thesis, Department Continuum Mechanics and Theory of Structures, Polytechnic University of Valencia, Valencia, Spain.
18.
Lázaro
,
M.
,
Pérez-Aparicio
,
J. L.
, and
Epstein
,
M.
,
2012
, “
Computation of Eigenvalues in Proportionally Damped Viscoelastic Structures Based on the Fixed-Point Iteration
,”
Appl. Math. Comput.
,
219
(
8
), pp.
3511
3529
.
19.
Lázaro
,
M.
, and
Pérez-Aparicio
,
J. L.
,
2014
, “
Characterization of Real Eigenvalues in Linear Viscoelastic Oscillators and the Non-Viscous Set
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021016
.
20.
Adhikari
,
S.
,
2000
, “
Damping Models for Structural Vibration
,” Ph.D. thesis, Engineering Department, Cambridge University, Cambridge, UK.
21.
Muller
,
P.
,
2005
, “
Are the Eigensolutions of a l-d.o.f. System With Viscoelastic Damping Oscillatory or Not?
,”
J. Sound Vib.
,
285
(
1–2
), pp.
501
509
.
22.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
,
2006
, “
Computational Methods for Complex Eigenproblems in Finite Element Analysis of Structural Systems With Viscoelastic Damping Treatments
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
6448
6462
.
23.
Li
,
L.
,
Hu
,
Y.
,
Deng
,
W.
,
,
L.
, and
Ding
,
Z.
,
2015
, “
Dynamics of Structural Systems With Various Frequency-Dependent Damping Models
,”
Front. Mech. Eng.
,
10
(
1
), pp.
48
63
.
24.
Li
,
L.
, and
Hu
,
Y.
,
2015
, “
Generalized Mode Acceleration and Modal Truncation Augmentation Methods for the Harmonic Response Analysis of Nonviscously Damped Systems
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
46
59
.
25.
Wagner
,
N.
, and
Adhikari
,
S.
,
2003
, “
Symmetric State-Space Method for a Class of Nonviscously Damped Systems
,”
AIAA J.
,
41
(
5
), pp.
951
956
.
26.
Adhikari
,
S.
, and
Wagner
,
N.
,
2003
, “
Analysis of Asymmetric Nonviscously Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
885
893
.
27.
Adhikari
,
S.
, and
Pascual
,
B.
,
2009
, “
Eigenvalues of Linear Viscoelastic Systems
,”
J. Sound Vib.
,
325
(
4–5
), pp.
1000
1011
.
28.
Tisseur
,
F.
, and
Meerbergen
,
K.
,
2001
, “
The Quadratic Eigenvalue Problem
,”
SIAM Rev.
,
43
(
2
), pp.
235
286
.
29.
Ostrowski
,
A. M.
,
1973
,
Solutions of Equations in Euclidean and Banach Spaces
,
Academic Press
, New York.
30.
Lázaro
,
M.
,
Pérez-Aparicio
,
J. L.
, and
Epstein
,
M.
,
2013
, “
A Viscous Approach Based on Oscillatory Eigensolutions for Viscoelastically Damped Vibrating Systems
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
767
782
.
You do not currently have access to this content.