Inflated membrane structures, useful in vibration/shock isolation devices, terrestrial and space structures, etc., rely on the internal dissipation in the membrane for vibration attenuation. In this work, using the Christensen viscoelastic material model, we study the contact mechanics, displacement-controlled relaxation response, force-controlled creep response, dynamic contact, and energy dissipation due to oscillatory contact in an inflated spherical nonlinear viscoelastic membrane. We consider an inflated spherical membrane squeezed between two large rigid, frictionless, parallel plates. The effective stiffness and damping in the membrane–plate assembly are determined, and a phenomenological model is developed. Under oscillatory contact condition, the energy dissipation per cycle is determined. Further, using the free-vibration test, the damped natural frequency of the membrane–plate system is calculated.

References

References
1.
Feng
,
W. W.
, and
Yang
,
W. H.
,
1973
, “
On the Contact Problem of an Inflated Spherical Nonlinear Membrane
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
209
214
.
2.
Kumar
,
N.
, and
DasGupta
,
A.
,
2013
, “
On the Contact Problem of an Inflated Spherical Hyperelastic Membrane
,”
Int. J. Nonlinear Mech.
,
57
, pp.
130
139
.
3.
Nadler
,
B.
,
2010
, “
On the Contact of a Spherical Membrane Enclosing a Fluid With Rigid Parallel Planes
,”
Int. J. Nonlinear Mech.
,
45
(
3
), pp.
294
300
.
4.
Nguyen
,
N.
,
Wineman
,
A.
, and
Wass
,
A.
,
2013
, “
Contact Problem of a Non-Linear Viscoelastic Spherical Membrane Enclosing Incompressible Fluid Between Two Rigid Parallel Plates
,”
Int. J. Nonlinear Mech.
,
50
, pp.
97
108
.
5.
Gandhi
,
F.
, and
Chopra
,
I.
,
1996
, “
A Time-Domain Non-Linear Viscoelastic Damper Model
,”
Smart Mater. Struct.
,
5
(
5
), pp.
517
528
.
6.
Wang
,
H.
,
Lei
,
M.
, and
Cai
,
S.
,
2013
, “
Viscoelastic Deformation of a Dielectric Elastomer Membrane Subjected to Electromechanical Loads
,”
J. Appl. Phys.
,
113
(
21
), p.
213508
.
7.
Groth
,
K. M.
, and
Granata
,
K. P.
,
2008
, “
The Viscoelastic Standard Nonlinear Solid Model: Predicting the Response of the Lumbar Intervertebral Disk to Low-Frequency Vibrations
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031005
.
8.
Nguyen
,
N.
,
Wineman
,
A.
, and
Wass
,
A.
,
2012
, “
Indentation of a Nonlinear Viscoelastic Membrane
,”
Math. Mech. Solids
,
18
(
1
), pp.
24
43
.
9.
Yang
,
W. H.
, and
Hsu
,
K. H.
,
1971
, “
Indentation of a Circular Membrane
,”
ASME J. Appl. Mech.
,
38
(
1
), pp.
227
230
.
10.
Selvadurai
,
A. P. S.
,
2006
, “
Deflections of a Rubber Membrane
,”
J. Mech. Phys. Solids
,
54
(
6
), pp.
1093
1119
.
11.
Selvadurai
,
A. P. S.
, and
Yu
,
Q.
,
2006
, “
On the Indentation of a Polymeric Membrane
,”
Proc. R. Soc. A
,
462
(
2065
), pp.
189
209
.
12.
Jenkins
,
C. H.
, and
Leonard
,
J. W.
,
1991
, “
Nonlinear Dynamic Response of Membranes: State of the Art
,”
ASME Appl. Mech. Rev.
,
44
(
7
), pp.
319
328
.
13.
Jenkins
,
C. H.
, and
Leonard
,
J. W.
,
1993
, “
Dynamic Wrinkling of Viscoelastic Membrane
,”
ASME J. Appl. Mech.
,
60
(
3
), pp.
575
582
.
14.
Jenkins
,
C. H.
,
1996
, “
Nonlinear Dynamic Response of Membranes: State of the Art—Update
,”
ASME Appl. Mech. Rev.
,
49
(
10S
), pp.
S41
S48
.
15.
Wang
,
H. C.
, and
Wineman
,
A. S.
,
1972
, “
A Mathematical Model for the Determination of Viscoelastic Behavior of Brain In Vivo—I Oscillatory Response
,”
J. Biomech.
,
5
(
5
), pp.
431
446
.
16.
Verron
,
E.
,
Marckmann
,
G.
, and
Peseux
,
B.
,
2001
, “
Dynamic Inflation of Non-Linear Elastic and Viscoelastic Rubber-Like Membranes
,”
Int. J. Numer. Methods Eng.
,
50
(
5
), pp.
1233
1251
.
17.
Amin
,
A. F. M. S.
,
Alam
,
M. S.
, and
Okui
,
Y.
,
2002
, “
An Improved Hyperelasticity Relation in Modeling Viscoelasticity Response of Natural and High Damping Rubbers in Compression: Experiments, Parameter Identification and Numerical Verification
,”
Mech. Mater.
,
34
(
2
), pp.
75
95
.
18.
Hyun
,
K.
,
Wilhelm
,
M.
,
Klein
,
C. O.
,
Cho
,
K. S.
,
Nam
,
J. G.
,
Ahn
,
K. H.
,
Lee
,
S. J.
,
Ewoldt
,
R. H.
, and
Mckinley
,
G. H.
,
2011
, “
A Review of Nonlinear Oscillatory Shear Test: Analysis and Application of Large Amplitude Oscillation Shear (LAOS)
,”
Prog. Polym. Sci.
,
36
(
12
), pp.
1697
1753
.
19.
Wineman
,
A.
,
2009
, “
Nonlinear Viscoelastic Solids—A Review
,”
Math. Mech. Solids
,
14
(
3
), pp.
300
366
.
20.
Christensen
,
R. M.
,
1971
,
Theory of Viscoelasticity an Introduction
,
Academic Press
,
London
.
21.
Christensen
,
R. M.
,
1980
, “
A Nonlinear Theory of Viscoelasticity for Application to Elastomer
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
762
768
.
22.
Yang
,
E.
,
Frecker
,
M.
, and
Mockensturm
,
E.
,
2005
, “
Viscoelastic Model of Dielectric Elastomer Membrane
,”
Proc. SPIE
,
5759
, pp.
82
93
.
23.
Mahmoud
,
F. F.
,
El-Shafei
,
A. G.
,
Abdelrahman
,
A. A.
, and
Attia
,
M. A.
,
2013
, “
Modeling of Nonlinear Viscoelastic Contact Problems With Large Deformations
,”
Appl. Math. Model.
,
37
(
10–11
), pp.
6730
6745
.
24.
Feng
,
W. W.
,
1992
, “
Viscoelastic Behavior of Elastomeric Membranes
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S29
S34
.
25.
Srivastava
,
A.
, and
Hui
,
C.-Y.
,
2014
, “
Nonlinear Viscoelastic Contact Mechanics of Long Rectangular Membranes
,”
Proc. R. Soc. A
,
470
(
2171
), p. 20140528.
26.
Feng
,
W. W.
,
1992
, “
A Recurrence Formula for Viscoelastic Constitutive Equations
,”
Int. J. Nonlinear Mech.
,
27
(
4
), pp.
675
678
.
27.
Yang
,
W. H.
,
1966
, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
395
401
.
28.
Kumar
,
N.
, and
DasGupta
,
A.
,
2014
, “
Contact Mechanics and Induced Hysteresis at Oscillatory Contacts With Adhesion
,”
Langmuir
,
30
(
30
), pp.
9107
9114
.
29.
Coleman
,
B. D.
, and
Noll
,
W.
,
1961
, “
Foundation of Linear Viscoelasticity
,”
Rev. Mod. Phys.
,
33
(
2
), pp.
239
249
.
30.
Foster
,
H. O.
,
1967
, “
Very Large Deformations of Axially Symmetrical Membranes Made of Neo-Hookean Materials
,”
Int. J. Eng. Sci.
,
5
(
1
), pp.
95
117
.
31.
Hu
,
G.
,
Hu
,
Z.
,
Jian
,
B.
,
Liu
,
L.
, and
Wan
,
H.
,
2011
, “
On the Determination of the Damping Coefficient of Non-Linear Spring–Dashpot System to Model Hertz Contact for Simulation by Discrete Element Method
,”
J. Comput.
,
6
(
5
), pp.
984
988
.
32.
Steigmann
,
D. J.
, and
Pipkin
,
A. C.
,
1989
, “
Axisymmetric Tension Field
,”
J. Appl. Math. Phys. (ZAMP)
,
40
(
4
), pp.
526
542
.
33.
Steigmann
,
D. J.
, and
Pipkin
,
A. C.
,
1989
, “
Finite Deformation of Wrinkled Membranes
,”
Quart. J. Appl. Math.
,
42
(
3
), pp.
427
440
.
34.
Argatov
,
I. I.
,
2013
, “
Mathematical Modeling of Linear Viscoelastic Impact: Application to Drop Impact Testing of Articular Cartilage
,”
Tribol. Int.
,
63
, pp.
213
225
.
35.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
,
1995
, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
,
19
(
2–3
), pp.
193
212
.
36.
Sweeney
,
J.
, and
Ward
,
I. M.
,
1995
, “
Rate-Dependent and Network Phenomena in the Multiaxial Drawing of Poly(Vinyl Chloride)
,”
Polymer
,
36
(
2
), pp.
299
308
.
37.
Yu
,
Q.
, and
Selvadurai
,
A. P. S.
,
2007
, “
Mechanics of a Rate-Dependent Polymer Network
,”
Philos. Mag.
,
87
(
24
), pp.
3519
3530
.
38.
Selvadurai
,
A. P. S.
, and
Yu
,
Q.
,
2006
, “
Constitutive Modelling of a Polymeric Material Subjected to Chemical Exposure
,”
Int. J. Plast.
,
22
(
6
), pp.
1089
1122
.
39.
Selvadurai
,
A. P. S.
, and
Yu
,
Q.
,
2008
, “
Mechanics of Polymeric Membranes Subjected to Chemical Exposure
,”
Int. J. Nonlinear Mech.
,
43
(
4
), pp.
264
276
.
You do not currently have access to this content.