This paper presents an experimental and numerical investigation into the dynamic response of three-dimensional (3D) orthogonal woven carbon composites undergoing soft impact. Composite beams of two different fiber architectures, varying only by the density of through-thickness reinforcement, were centrally impacted by metallic foam projectiles. Using high-speed photography, the center-point back-face deflection was measured as a function of projectile impulse. Qualitative comparisons are made with a similar unidirectional (UD) laminate material. No visible delamination occurred in orthogonal 3D woven samples, and beam failure was caused by tensile fiber fracture at the gripped ends. This contrasts with UD carbon-fiber laminates, which exhibit a combination of widespread delamination and tensile fracture. Post impact clamped–clamped beam bending tests were undertaken across the range of impact velocities tested to investigate any internal damage within the material. Increasing impact velocity caused a reduction of beam stiffness: this phenomenon was more pronounced in composites with a higher density of through-thickness reinforcement. A three-dimensional finite-element modeling strategy is presented and validated, showing excellent agreement with the experiment in terms of back-face deflection and damage mechanisms. The numerical analyses confirm negligible influence from through-thickness reinforcement in regard to back-face deflection, but show significant reductions in delamination damage propagation. Finite-element modeling was used to demonstrate the significant structural enhancements provided by the through-the-thickness (TTT) weave. The contributions to the field made by this research include the characterization of 3D woven composite materials under high-speed soft impact, and the demonstration of how established finite-element modeling methodologies can be applied to the simulation of orthogonal woven textile composite materials undergoing soft-impact loading.

References

References
1.
LeBlanc
,
J.
,
Shukla
,
A.
,
Rousseau
,
C.
, and
Bogdanovich
,
A.
,
2007
, “
Shock Loading of Three-Dimensional Woven Composite Materials
,”
Compos. Struct.
,
79
(
3
), pp.
344
355
.
2.
Tekalur
,
S. A.
,
Bogdanovich
,
A. E.
, and
Shukla
,
A.
,
2009
, “
Shock Loading Response of Sandwich Panels With 3D Woven E-Glass Composite Skins and Stitched Foam Core
,”
Compos. Sci. Technol.
,
69
(
6
), pp.
736
753
.
3.
Radford
,
D.
,
Deshpande
,
V.
, and
Fleck
,
N.
,
2005
, “
The Use of Metal Foam Projectiles to Simulate Shock Loading on a Structure
,”
Int. J. Impact Eng.
,
31
(
9
), pp.
1152
1171
.
4.
Smith
,
P. D.
, and
Hetherington
,
J. G.
,
1994
,
Blast and Ballistic Loading of Structures
,
CRC Press
,
Boca Raton, FL
.
5.
Liu
,
T.
,
Fleck
,
N.
,
Wadley
,
H.
, and
Deshpande
,
V.
,
2013
, “
The Impact of Sand Slugs Against Beams and Plates: Coupled Discrete Particle/Finite Element Simulations
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1798
1821
.
6.
Radford
,
D.
,
Fleck
,
N.
, and
Deshpande
,
V.
,
2006
, “
The Response of Clamped Sandwich Beams Subjected to Shock Loading
,”
Int. J. Impact Eng.
,
32
(
6
), pp.
968
987
.
7.
Radford
,
D.
,
McShane
,
G.
,
Deshpande
,
V.
, and
Fleck
,
N.
,
2006
, “
The Response of Clamped Sandwich Plates With Metallic Foam Cores to Simulated Blast Loading
,”
Int. J. Solids and Struct.
,
43
(
7
), pp.
2243
2259
.
8.
McShane
,
G.
,
Radford
,
D.
,
Deshpande
,
V.
, and
Fleck
,
N.
,
2006
, “
The Response of Clamped Sandwich Plates With Lattice Cores Subjected to Shock Loading
,”
Eur. J. Mech.-A/Solids
,
25
(
2
), pp.
215
229
.
9.
Russell
,
B.
,
Liu
,
T.
,
Fleck
,
N.
, and
Deshpande
,
V.
,
2012
, “
The Soft Impact of Composite Sandwich Beams With a Square-Honeycomb Core
,”
Int. J. Impact Eng.
,
48
, pp.
65
81
.
10.
Karthikeyan
,
K.
,
Russell
,
B. P.
,
Fleck
,
N. A.
,
O'Masta
,
M.
,
Wadley
,
H. N. G.
, and
Deshpande
,
V. S.
,
2013
, “
The Soft Impact Response of Composite Laminate Beams
,”
Int. J. Impact Eng.
,
60
, pp.
24
36
.
11.
Shyr
,
T.-W.
, and
Pan
,
Y.-H.
,
2003
, “
Impact Resistance and Damage Characteristics of Composite Laminates
,”
Compos. Struct.
,
62
(
2
), pp.
193
203
.
12.
Cantwell
,
W.
, and
Morton
,
J.
,
1991
, “
The Impact Resistance of Composite Materials—A Review
,”
Composites
,
22
(
5
), pp.
347
362
.
13.
Wisnom
,
M.
,
2012
, “
The Role of Delamination in Failure of Fibre-Reinforced Composites
,”
Philos. Trans. Royal Soc. Lond. A: Math., Phys. Eng. Sci.
,
370
(
1965
), pp.
1850
1870
.
14.
Tong
,
L.
,
Mouritz
,
A. P.
, and
Bannister
,
M.
,
2002
,
3D Fibre Reinforced Polymer Composites
,
Elsevier
,
Oxford, UK
.
15.
Mouritz
,
A.
,
2001
, “
Ballistic Impact and Explosive Blast Resistance of Stitched Composites
,”
Compos. Part B: Eng.
,
32
(
5
), pp.
431
439
.
16.
Mouritz
,
A.
,
2007
, “
Review of z-Pinned Composite Laminates
,”
Compos. Part A: Appl. Sci. Manuf.
,
38
(
12
), pp.
2383
2397
.
17.
Kalwak
,
G.
, and
Jevons
,
M.
,
2012
, “
Experimental Assessment and Design of Through Thickness Reinforcement in Thick Composite Laminates Subjected to Bird Strike Loading
,” 15th European Conference on Composite Materials (ECCM15), Venice, Italy, June 24–28.
18.
Kalwak
,
G.
,
Read
,
S.
,
Jevons
,
M.
, and
Petrinic
,
N.
,
2014
, “
Investigation of the Delamination Characteristics of Composite Specimens With Through Thickness Reinforcement Using an Inertia Constrained Soft Body Beam Bend Test Specimens
,” 16th European Conference on Composite Materials (ECCM16), Seville, Spain, June 22–26.
19.
Mohamed
,
G.
,
Kalwak
,
G.
,
Hallett
,
S. R.
, and
Jevons
,
M.
,
2014
, “
Modelling Soft Body Impact of Through-Thickness Reinforcement Composites
,”
16th European Conference on Composite Materials (ECCM16)
, Seville, Spain, June 22–26.
20.
Steeves
,
C. A.
, and
Fleck
,
N. A.
,
2006
, “
In-Plane Properties of Composite Laminates With Through-Thickness Pin Reinforcement
,”
Int. J. Solids Struct.
,
43
(
10
), pp.
3197
3212
.
21.
Bogdanovich
,
A.
, and
Mohamed
,
M.
,
2009
, “
Three-Dimensional Reinforcements for Composites
,”
SAMPE J.
,
45
(
6
), pp.
8
28
.
22.
Barrett
,
D. J.
,
1996
, “
The Mechanics of z-Fiber Reinforcement
,”
Compos. Struct.
,
36
(
1
), pp.
23
32
.
23.
Grassi
,
M.
, and
Zhang
,
X.
,
2003
, “
Finite Element Analyses of Mode I Interlaminar Delamination in z-Fibre Reinforced Composite Laminates
,”
Compos. Sci. Technol.
,
63
(
12
), pp.
1815
1832
.
24.
Bahei-El-Din
,
Y. A.
, and
Zikry
,
M. A.
,
2003
, “
Impact-Induced Deformation Fields in 2D and 3D Woven Composites
,”
Compos. Sci. Technol.
,
63
(
7
), pp.
923
942
.
25.
Grogan
,
J.
,
Tekalur
,
S. A.
,
Shukla
,
A.
,
Bogdanovich
,
A.
, and
Coffelt
,
R. A.
,
2007
, “
Ballistic Resistance of 2D and 3D Woven Sandwich Composites
,”
J. Sandwich Struct. Mater.
,
9
(
3
), pp.
283
302
.
26.
Yu
,
Y.
,
Wang
,
X.
, and
Lim
,
C.
,
2009
, “
Ballistic Impact of 3D Orthogonal Woven Composite by a Spherical Bullet: Experimental Study and Numerical Simulation
,”
Int. J. Eng. Appl. Sci.
,
1
(
1
), pp.
1
18
.
27.
Li
,
Z.
,
Sun
,
B.
, and
Gu
,
B.
,
2010
, “
FEM Simulation of 3D Angle-Interlock Woven Composite Under Ballistic Impact From Unit Cell Approach
,”
Comput. Mater. Sci.
,
49
(
1
), pp.
171
183
.
28.
Ghosh
,
R.
, and
De
,
S.
,
2014
, “
Z-Fiber Influence on High Speed Penetration of 3D Orthogonal Woven Fiber Composites
,”
Mech. Mater.
,
68
, pp.
147
163
.
29.
Jia
,
X.
,
Sun
,
B.
, and
Gu
,
B.
,
2011
, “
A Numerical Simulation on Ballistic Penetration Damage of 3D Orthogonal Woven Fabric at Microstructure Level
,”
Int. J. Damage Mech.
,
21
(
2
), pp.
237
266
.
30.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
329
334
.
31.
Matzenmiller
,
A.
,
Lubliner
,
J.
, and
Taylor
,
R.
,
1995
, “
A Constitutive Model for Anisotropic Damage in Fiber-Composites
,”
Mech. Mater.
,
20
(
2
), pp.
125
152
.
32.
Russell
,
B.
,
Malcom
,
A.
,
Wadley
,
H.
, and
Deshpande
,
V.
,
2010
, “
Dynamic Compressive Response of Composite Corrugated Cores
,”
J. Mech. Mater. Struct.
,
5
(
3
), pp.
477
493
.
33.
Gerlach
,
R.
,
Siviour
,
C. R.
,
Wiegand
,
J.
, and
Petrinic
,
N.
,
2012
, “
In-Plane and Through-Thickness Properties, Failure Modes, Damage and Delamination in 3D Woven Carbon Fibre Composites Subjected to Impact Loading
,”
Compos. Sci. Technol.
,
72
(
3
), pp.
397
411
.
34.
Pankow
,
M.
,
Salvi
,
A.
,
Waas
,
A.
,
Yen
,
C.
, and
Ghiorse
,
S.
,
2011
, “
Split Hopkinson Pressure Bar Testing of 3D Woven Composites
,”
Compos. Sci. Technol.
,
71
(
9
), pp.
1196
1208
.
35.
Duvaunt
,
G.
, and
Lions
,
J.
,
1976
,
Inequalities in Mechanics and Physics
,
Springer
,
Berlin
.
36.
Deshpande
,
V.
, and
Fleck
,
N.
,
2000
, “
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,”
Int. J. Impact Eng.
,
24
(
3
), pp.
277
298
.
37.
Cox
,
B.
,
Dadkhah
,
M.
,
Inman
,
R.
,
Morris
,
W.
, and
Zupon
,
J.
,
1992
, “
Mechanisms of Compressive Failure in 3D Composites
,”
Acta Metall. Mater.
,
40
(
12
), pp.
3285
3298
.
38.
Turner
,
P.
,
Liu
,
T.
, and
Zeng
,
X.
,
2015
, “
Collapse of 3D Orthogonal Woven Carbon Fibre Composites Under in-Plane Tension, Compression, and Out-of-Plane Bending
” (unpublished).
39.
Mouritz
,
A.
, and
Cox
,
B.
,
2010
, “
A Mechanistic Interpretation of the Comparative in-Plane Mechanical Properties of 3D Woven, Stitched and Pinned Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
41
(
6
), pp.
709
728
.
40.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
,
30
(
10
), pp.
1283
1305
.
41.
Shi
,
Y.
,
Swait
,
T.
, and
Soutis
,
C.
,
2012
, “
Modelling Damage Evolution in Composite Laminates Subjected to Low Velocity Impact
,”
Compos. Struct.
,
94
(
9
), pp.
2902
2913
.
You do not currently have access to this content.