We report results from a systematic numerical investigation of the nonlinear patterns that emerge when a slender elastic rod is deployed onto a moving substrate; a system also known as the elastic sewing machine (ESM). The discrete elastic rods (DER) method is employed to quantitatively characterize the coiling patterns, and a comprehensive classification scheme is introduced based on their Fourier spectrum. Our analysis yields physical insight on both the length scales excited by the ESM, as well as the morphology of the patterns. The coiling process is then rationalized using a reduced geometric model (GM) for the evolution of the position and orientation of the contact point between the rod and the belt, as well as the curvature of the rod near contact. This geometric description reproduces almost all of the coiling patterns of the ESM and allows us to establish a unifying bridge between our elastic problem and the analogous patterns obtained when depositing a viscous thread onto a moving surface; a well-known system known as the fluid-mechanical sewing machine (FMSM).

References

References
1.
Habibi
,
M.
,
Najafi
,
J.
, and
Ribe
,
N. M.
,
2011
, “
Pattern Formation in a Thread Falling Onto a Moving Belt an Elastic Sewing Machine
,”
Phys. Rev. E
,
84
(
1
), p.
016219
.
2.
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2014
, “
Pattern Morphology in the Elastic Sewing Machine
,”
Extreme Mech. Lett.
,
1
, pp.
76
82
.
3.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
41
), pp.
14663
14668
.
4.
Gerwick
,
B. C.
,
1987
,
Construction of Offshore Structures
,
Wiley
,
New York
.
5.
Geblinger
,
N.
,
Ismach
,
A.
, and
Joselevich
,
E.
,
2008
, “
Self-Organized Nanotube Serpentines
,”
Nat. Nanotechnol.
,
3
(
4
), pp.
195
200
.
6.
Chiu-Webster
,
S.
, and
Lister
,
J.
,
2006
, “
The Fall of a Viscous Thread Onto a Moving Surface: A Fluid-Mechanical Sewing Machine
,”
J. Fluid Mech.
,
569
, pp.
89
111
.
7.
Mahadevan
,
L.
,
Ryu
,
W. S.
, and
Samuel
,
A. D.
,
1998
, “
Fluid ‘Rope Trick’ Investigated
,”
Nature
,
392
(
6672
), p.
140
.
8.
Maleki
,
M.
,
Habibi
,
M.
,
Golestanian
,
R.
,
Ribe
,
N.
, and
Bonn
,
D.
,
2004
, “
Liquid Rope Coiling on a Solid Surface
,”
Phys. Rev. Lett.
,
93
(
21
), p.
214502
.
9.
Morris
,
S. W.
,
Dawes
,
J. H.
,
Ribe
,
N. M.
, and
Lister
,
J. R.
,
2008
, “
Meandering Instability of a Viscous Thread
,”
Phys. Rev. E
,
77
(
6
), p.
066218
.
10.
Welch
,
R. L.
,
Szeto
,
B.
, and
Morris
,
S. W.
,
2012
, “
Frequency Structure of the Nonlinear Instability of a Dragged Viscous Thread
,”
Phys. Rev. E
,
85
(
6
), p.
066209
.
11.
Tchavdarov
,
B.
,
Yarin
,
A.
, and
Radev
,
S.
,
1993
, “
Buckling of Thin Liquid Jets
,”
J. Fluid Mech.
,
253
, pp.
593
615
.
12.
Cruickshank
,
J.
, and
Munson
,
B.
,
1981
, “
Viscous Fluid Buckling of Plane and Axisymmetric Jets
,”
J. Fluid Mech.
,
113
, pp.
221
239
.
13.
Hlod
,
A.
,
Aarts
,
A.
,
van de Ven
,
A.
, and
Peletier
,
M.
,
2007
, “
Mathematical Model of Falling of a Viscous Jet Onto a Moving Surface
,”
Eur. J. Appl. Math.
,
18
(
06
), pp.
659
677
.
14.
Audoly
,
B.
,
Clauvelin
,
N.
,
Brun
,
P.-T.
,
Bergou
,
M.
,
Grinspun
,
E.
, and
Wardetzky
,
M.
,
2013
, “
A Discrete Geometric Approach for Simulating the Dynamics of Thin Viscous Threads
,”
J. Comput. Phys.
,
253
, pp.
18
49
.
15.
Brun
,
P.-T.
,
Ribe
,
N. M.
, and
Audoly
,
B.
,
2012
, “
A Numerical Investigation of the Fluid Mechanical Sewing Machine
,”
Phys. Fluids
,
24
(
4
), p.
043102
.
16.
Ribe
,
N. M.
,
Lister
,
J. R.
, and
Chiu-Webster
,
S.
,
2006
, “
Stability of a Dragged Viscous Thread: Onset of ‘Stitching’ in a Fluid-Mechanical Sewing Machine
,”
Phys. Fluids
,
18
(
12
), p.
124105
.
17.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graphics
,
29
(
4
), p.
116
.
18.
Ribe
,
N. M.
,
2004
, “
Coiling of Viscous Jets
,”
Philos. Trans. R. Soc. London, Ser. A
,
460
(
2051
), pp.
3223
3239
.
19.
Mahadevan
,
L.
, and
Keller
,
J. B.
,
1996
, “
Coiling of Flexible Ropes
,”
Philos. Trans. R. Soc. London, Ser. A
,
452
(
1950
), pp.
1679
1694
.
20.
Habibi
,
M.
,
Ribe
,
N.
, and
Bonn
,
D.
,
2007
, “
Coiling of Elastic Ropes
,”
Phys. Rev. Lett.
,
99
(
15
), p.
154302
.
21.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graphics
,
27
(
3
), p.
63
.
22.
Brun
,
P.-T.
,
Audoly
,
B.
,
Ribe
,
N. M.
,
Eaves
,
T. S.
, and
Lister
,
J. R.
,
2015
, “
Liquid Ropes: A Geometrical Model for Thin Viscous Jet Instabilities
,”
Phys. Rev. Lett.
,
114
, p.
174501
.
23.
Lazarus
,
A.
,
Miller
,
J.
, and
Reis
,
P.
,
2013
, “
Continuation of Equilibria and Stability of Slender Elastic Rods Using an Asymptotic Numerical Method
,”
J. Mech. Phys. Solids
,
61
(
8
), p.
1712
.
24.
Xin
,
Y.
, and
Reneker
,
D. H.
,
2012
, “
Hierarchical Polystyrene Patterns Produced by Electrospinning
,”
Polymer
,
53
(
19
), pp.
4254
4261
.
25.
Lewis
,
J. A.
,
Smay
,
J. E.
,
Stuecker
,
J.
, and
Cesarano
,
J.
,
2006
, “
Direct Ink Writing of Three-Dimensional Ceramic Structures
,”
J. Am. Ceram. Soc.
,
89
(
12
), pp.
3599
3609
.
26.
Passieux
,
R.
,
Guthrie
,
L.
,
Rad
,
S. H.
,
Lévesque
,
M.
,
Therriault
,
D.
, and
Gosselin
,
F. P.
,
2015
, “
Instability-Assisted Direct Writing of Microstructured Fibers Featuring Sacrificial Bonds
,”
Adv. Mater.
,
27
(
24
), pp.
3676
3680
.
You do not currently have access to this content.