Flexoelectricity is an electromechanical effect coupling polarization to strain gradients. It fundamentally differs from piezoelectricity because of its size-dependence and symmetry. Flexoelectricity is generally perceived as a small effect noticeable only at the nanoscale. Since ferroelectric ceramics have a particularly high flexoelectric coefficient, however, it may play a significant role as piezoelectric transducers shrink to the submicrometer scale. We examine this issue with a continuum model self-consistently treating piezo- and flexoelectricity. We show that in piezoelectric device configurations that induce strain gradients and at small but technologically relevant scales, the electromechanical coupling may be dominated by flexoelectricity. More importantly, depending on the device design flexoelectricity may enhance or reduce the effective piezoelectric effect. Focusing on bimorph configurations, we show that configurations that are equivalent at large scales exhibit dramatically different behavior for thicknesses below 100 nm for typical piezoelectric materials. Our results suggest flexoelectric-aware designs for small-scale piezoelectric bimorph transducers.

References

References
1.
Yudin
,
P. V.
, and
Tagantsev
,
A. K.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
2.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y.-W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
3.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
, pp.
387
421
.
4.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(9), p.
093502
.
5.
Abdollahi
,
A.
,
Millan
,
D.
,
Peco
,
C.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2015
, “
Revisiting Pyramid Compression to Quantify Flexoelectricity: A Three-Dimensional Simulation Study
,”
Phys. Rev. B
,
91
(
10
), p.
104103
.
6.
Huang
,
W.
,
Kwon
,
S.-R.
,
Zhang
,
S.
,
Yuan
,
F.-G.
, and
Jiang
,
X.
,
2013
, “
A Trapezoidal Flexoelectric Accelerometer
,”
J. Intell. Mater. Syst. Struct.
,
25
(3), pp.
271
277
.
7.
Kwon
,
S. R.
,
Huang
,
W. B.
,
Zhang
,
S. J.
,
Yuan
,
F. G.
, and
Jiang
,
X. N.
,
2013
, “
Flexoelectric Sensing Using a Multilayered Barium Strontium Titanate Structure
,”
Smart Mater. Struct.
,
22
(11), p.
115017
.
8.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures
,”
Phys. Rev. B
,
78
(12), p.
121407
.
9.
Qi
,
Y.
,
Kim
,
J.
,
Nguyen
,
T. D.
,
Lisko
,
B.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2011
, “
Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated From Buckled PZT Ribbons
,”
Nano Lett.
,
11
(
3
), pp.
1331
1336
.
10.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
11.
Sharma
,
N. D.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
.
12.
Sharma
,
N. D.
,
Landis
,
C. M.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(
2
), p.
024304
.
13.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Electrets in Soft Materials: Nonlinearity, Size Effects, and Giant Electromechanical Coupling
,”
Phys. Rev. E
,
90
(1), p.
012603
.
14.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
(1), pp.
209
227
.
15.
Mbarki
,
R.
,
Baccam
,
N.
,
Dayal
,
K.
, and
Sharma
,
P.
,
2014
, “
Piezoelectricity Above the Curie Temperature? Combining Flexoelectricity and Functional Grading to Enable High-Temperature Electromechanical Coupling
,”
Appl. Phys. Lett.
,
104
(12), p.
122904
.
16.
Ivaldi
,
P.
,
Abergel
,
J.
,
Matheny
,
M. H.
,
Villanueva
,
L. G.
,
Karabalin
,
R. B.
,
Roukes
,
M. L.
,
Andreucci
,
P.
,
Hentz
,
S.
, and
Defaý
,
E.
,
2011
, “
50 nm Thick AlN Film-Based Piezoelectric Cantilevers for Gravimetric Detection
,”
J. Micromech. Microeng.
,
21
(8), p.
085023
.
17.
Sinha
,
N.
,
Wabiszewski
,
G. E.
,
Mahameed
,
R.
,
Felmetsger
,
V. V.
,
Tanner
,
S. M.
,
Carpick
,
R. W.
, and
Piazza
,
G.
,
2009
, “
Piezoelectric Aluminum Nitride Nanoelectromechanical Actuators
,”
Appl. Phys. Lett.
,
95
(5), p.
053106
.
18.
Kang
,
S. J.
,
Park
,
Y. J.
,
Bae
,
I.
,
Kim
,
K. J.
,
Kim
,
H. C.
,
Bauer
,
S.
,
Thomas
,
E. L.
, and
Park
,
C.
,
2009
, “
Printable Ferroelectric PVDF/PMMA Blend Films With Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory
,”
Adv. Funct. Mater.
,
19
(17), pp.
2812
2818
.
19.
Smits
,
J. G.
,
Dalke
,
S. I.
, and
Cooney
,
T. K.
,
1991
, “
The Constituent Equations of Piezoelectric Bimorphs
,”
Sens. Actuators A
,
28
(
1
), pp.
41
61
.
20.
Pritchard
,
J.
,
Bowen
,
C. R.
, and
Lowrie
,
F.
,
2001
, “
Multilayer Actuators: Review
,”
Br. Ceram. Trans.
,
100
(
6
), pp.
265
273
.
21.
Smits
,
J.
, and
Ballato
,
A.
,
1994
, “
Dynamic Admittance Matrix of Piezoelectric Cantilever Bimorphs
,”
J. Microelectromech. Syst.
,
3
(
3
), pp.
105
112
.
22.
Sodano
,
H.
,
Inman
,
D.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(3), pp.
197
205
.
23.
Abdollahi
,
A.
, and
Arias
,
I.
,
2012
, “
Phase-Field Modeling of Crack Propagation in Piezoelectric and Ferroelectric Materials With Different Electro-Mechanical Crack Conditions
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
2100
2126
.
24.
Catalan
,
G.
,
Sinnamon
,
L. J.
, and
Gregg
,
J. M.
,
2004
, “
The Effect of Flexoelectricity on the Dielectric Properties of Inhomogeneously Strained Ferroelectric Thin Films
,”
J. Phys.: Condens. Matter
,
16
(
13
), pp.
2253
2264
.
25.
Arroyo
,
M.
, and
Ortiz
,
M.
,
2006
, “
Local Maximum-Entropy Approximation Schemes: A Seamless Bridge Between Finite Elements and Meshfree Methods
,”
Int. J. Numer. Method Eng.
,
65
(
13
), pp.
2167
2202
.
26.
Mao
,
S.
, and
Purohit
,
P. K.
,
2014
, “
Insights Into Flexoelectric Solids From Strain-Gradient Elasticity
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081004
.
27.
Sharma
,
N. D.
,
Landis
,
C.
, and
Sharma
,
P.
,
2012
, “
Erratum: Piezoelectric Thin-Film Super-Lattices Without Using Piezoelectric Materials [J. Appl. Phys. 108, 024304 (2010)]
,”
J. Appl. Phys.
,
111
(
5
), p.
059901
.
28.
Tagantsev
,
A.
, and
Yurkov
,
A.
,
2012
, “
Flexoelectric Effect in Finite Samples
,”
J. Appl. Phys.
112
(
4
), p.
044103
.
29.
Stengel
,
M.
,
2013
, “
Microscopic Response to Inhomogeneous Deformations in Curvilinear Coordinates
,”
Nat. Commun.
,
4
, p.
2693
.
30.
Zhu
,
S.
,
Jiang
,
B.
, and
Cao
,
W.
,
1998
, “
Characterization of Piezoelectric Materials Using Ultrasonic and Resonant Techniques
,”
Proc. SPIE
,
3341
, pp.
154
162
.
31.
Zelisko
,
M.
,
Hanlumyuang
,
Y.
,
Yang
,
S.
,
Liu
,
Y.
,
Lei
,
C.
,
Li
,
J.
,
Ajayan
,
P.
, and
Sharma
,
P.
,
2014
, “
Anomalous Piezoelectricity in Two-Dimensional Graphene Nitride Nanosheets
,”
Nat. Commun.
,
5
, p.
4284
.
You do not currently have access to this content.