It has been experimentally observed that wrinkles formed on the surface of electrospun polymer nanofibers when they are under uniaxial tension (Appl. Phys. Lett., 91, p. 151901 (2007)). Molecular dynamics (MD) simulations, finite element analyses (FEA), and continuum theory calculations have been performed to understand this interesting phenomenon. The surface wrinkles are found to be induced by the cylindrical core–shell microstructure of polymer nanofibers, especially the mismatch of Poisson's ratio between the core and shell layers. Through the MD simulations, the polymer nanofiber is found to be composed of a glassy core embedded into a rubbery shell. The Poisson's ratios of the core and shell layers are close to that of the compressible (0.2) and incompressible (0.5) polymers, respectively. The core is twice stiffer than the shell, due to its highly packed polymer chains and large entanglement density. Based on this observation, a FEA model has been built to study surface instability of the cylindrical core–shell soft solids under uniaxial tension. The “polarization” mechanism at the interphase between the core and shell layers, induced by the mismatch of their Poisson's ratios, is identified as the key element to drive the surface wrinkles during the instability analysis. Through postbuckling analysis, the plastic deformation is also found to play an important role in this process. Without the plastic deformation, the initial imperfection cannot lead to surface wrinkles. The FEA model shows that the yielding stress (or strain rate) can greatly affect the onset and modes of surface wrinkles, which are in good agreement with experimental observations on electrospun polymer nanofibers. The deformation mechanism and critical condition for the surface wrinkles are further clarified through a simplified continuum theory. This study provides a new way to understand and control the surface morphology of cylindrical core–shell materials.

References

References
1.
Kim
,
J.-S.
, and
Reneker
,
D. H.
,
1999
, “
Mechanical Properties of Composites Using Ultrafine Electrospun Fibers
,”
Polym. Compos.
,
20
(
1
), pp.
124
131
.
2.
Huang
,
Z.-M.
,
Zhang
,
Y.-Z.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
,
2003
, “
A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites
,”
Compos. Sci. Technol.
,
63
(
15
), pp.
2223
2253
.
3.
Schreuder-Gibson
,
H.
,
Gibson
,
P.
,
Senecal
,
K.
,
Sennett
,
M.
,
Walker
,
J.
,
Yeomans
,
W.
,
Ziegler
,
D.
, and
Tsai
,
P. P.
,
2002
, “
Protective Textile Materials Based on Electrospun Nanofibers
,”
J. Adv. Mater.
,
34
(
3
), pp.
44
55
.
4.
Aussawasathien
,
D.
,
Dong
,
J.-H.
, and
Dai
,
L.
,
2005
, “
Electrospun Polymer Nanofiber Sensors
,”
Synth. Met.
,
154
(
1
), pp.
37
40
.
5.
Huang
,
L.
,
McMillan
,
R. A.
,
Apkarian
,
R. P.
,
Pourdeyhimi
,
B.
,
Conticello
,
V. P.
, and
Chaikof
,
E. L.
,
2000
, “
Generation of Synthetic Elastin-Mimetic Small Diameter Fibers and Fiber Networks
,”
Macromolecules
,
33
(
8
), pp.
2989
2997
.
6.
Yoshimoto
,
H.
,
Shin
,
Y.
,
Terai
,
H.
, and
Vacanti
,
J.
,
2003
, “
A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering
,”
Biomaterials
,
24
(
12
), pp.
2077
2082
.
7.
Kenawy
,
E.-R.
,
Bowlin
,
G. L.
,
Mansfield
,
K.
,
Layman
,
J.
,
Simpson
,
D. G.
,
Sanders
,
E. H.
, and
Wnek
,
G. E.
,
2002
, “
Release of Tetracycline Hydrochloride From Electrospun Poly (Ethylene-co-Vinylacetate), Poly (Lactic Acid), and a Blend
,”
J. Controlled Release
,
81
(
1
), pp.
57
64
.
8.
Norris
,
I. D.
,
Shaker
,
M. M.
,
Ko
,
F. K.
, and
MacDiarmid
,
A. G.
,
2000
, “
Electrostatic Fabrication of Ultrafine Conducting Fibers: Polyaniline/Polyethylene Oxide Blends
,”
Synth. Met.
,
114
(
2
), pp.
109
114
.
9.
Wang
,
L.
,
Pai
,
C.-L.
,
Boyce
,
M. C.
, and
Rutledge
,
G. C.
,
2009
, “
Wrinkled Surface Topographies of Electrospun Polymer Fibers
,”
Appl. Phys. Lett.
,
94
(
15
), p.
151916
.
10.
Naraghi
,
M.
,
Chasiotis
,
I.
,
Kahn
,
H.
,
Wen
,
Y.
, and
Dzenis
,
Y.
,
2007
, “
Mechanical Deformation and Failure of Electrospun Polyacrylonitrile Nanofibers as a Function of Strain Rate
,”
Appl. Phys. Lett.
,
91
(
15
), p.
151901
.
11.
Wu
,
X.-F.
,
Kostogorova-Beller
,
Y. Y.
,
Goponenko
,
A. V.
,
Hou
,
H.
, and
Dzenis
,
Y. A.
,
2008
, “
Rippling of Polymer Nanofibers
,”
Phys. Rev. E
,
78
(
6
), p.
061804
.
12.
Biot
,
M.
,
1963
, “
Surface Instability of Rubber in Compression
,”
Appl. Sci. Res.
,
12
(
2
), pp.
168
182
.
13.
Beatty
,
M. F.
, and
Hook
,
D.
,
1968
, “
Some Experiments on the Stability of Circular, Rubber Bars Under End Thrust
,”
Int. J. Solids Struct.
,
4
(
6
), pp.
623
635
.
14.
Bigoni
,
D.
, and
Gei
,
M.
,
2001
, “
Bifurcation of a Coated, Elastic Cylinder
,”
Int. J. Solids Struct.
,
38
(
19
), pp.
5117
5148
.
15.
Timoshenko
,
S.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
2nd ed.
,
Dover Publishing
,
New York
.
16.
Pai
,
C.-L.
,
Boyce
,
M. C.
, and
Rutledge
,
G. C.
,
2009
, “
Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun From Dimethylformamide
,”
Macromolecules
,
42
(
6
), pp.
2102
2114
.
17.
Camposeo
,
A.
,
Greenfeld
,
I.
,
Tantussi
,
F.
,
Pagliara
,
S.
,
Moffa
,
M.
,
Fuso
,
F.
,
Allegrini
,
M.
,
Zussman
,
E.
, and
Pisignano
,
D.
,
2013
, “
Local Mechanical Properties of Electrospun Fibers Correlate to Their Internal Nanostructure
,”
Nano Lett.
,
13
(
11
), pp.
5056
5062
.
18.
Naraghi
,
M.
,
Arshad
,
S.
, and
Chasiotis
,
I.
,
2011
, “
Molecular Orientation and Mechanical Property Size Effects in Electrospun Polyacrylonitrile Nanofibers
,”
Polymer
,
52
(
7
), pp.
1612
1618
.
19.
Buell
,
S.
,
Van Vliet
,
K. J.
, and
Rutledge
,
G. C.
,
2009
, “
Mechanical Properties of Glassy Polyethylene Nanofibers Via Molecular Dynamics Simulations
,”
Macromolecules
,
42
(
13
), pp.
4887
4895
.
20.
Tang
,
S.
,
Ying
,
L.
,
Liu
,
W. K.
, and
Xiaoxu
,
H.
,
2014
, “
Surface Ripples of Polymeric Nanofibers Under Tension: The Crucial Role of Poisson's Ratio
,”
Macromolecules
,
47
(
18
), pp.
6503
6514
.
21.
Li
,
B.
,
Jia
,
F.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2011
, “
Surface Wrinkling Patterns on a Core-Shell Soft Sphere
,”
Phys. Rev. Lett.
,
106
(
23
), p.
234301
.
22.
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.
23.
Yin
,
J.
,
Cao
,
Z.
,
Li
,
C.
,
Sheinman
,
I.
, and
Chen
,
X.
,
2008
, “
Stress-Driven Buckling Patterns in Spheroidal Core/Shell Structures
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
49
), pp.
19132
19135
.
24.
Yin
,
J.
,
Chen
,
X.
, and
Sheinman
,
I.
,
2009
, “
Anisotropic Buckling Patterns in Spheroidal Film/Substrate Systems and Their Implications in Some Natural and Biological Systems
,”
J. Mech. Phys. Solids
,
57
(
9
), pp.
1470
1484
.
25.
Li
,
Y.
,
Kröger
,
M.
, and
Liu
,
W. K.
,
2014
, “
Endocytosis of Pegylated Nanoparticles Accompanied by Structural and Free Energy Changes of the Grafted Polyethylene Glycol
,”
Biomaterials
,
35
(
30
), pp.
8467
8478
.
26.
Li
,
Y.
,
Kröger
,
M.
, and
Liu
,
W. K.
,
2015
, “
Shape Effect in Cellular Uptake of Pegylated Nanoparticles: Comparison Between Sphere, Rod, Cube and Disk
,”
Nanoscale
, epub.
27.
Budday
,
S.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2014
, “
The Role of Mechanics During Brain Development
,”
J. Mech. Phys. Solids
,
72
, pp.
75
92
.
28.
Chen
,
X.
, and
Yin
,
J.
,
2010
, “
Buckling Patterns of Thin Films on Curved Compliant Substrates With Applications to Morphogenesis and Three-Dimensional Micro-Fabrication
,”
Soft Matter
,
6
(
22
), pp.
5667
5680
.
29.
Cai
,
S.
,
Breid
,
D.
,
Crosby
,
A. J.
,
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
2011
, “
Periodic Patterns and Energy States of Buckled Films on Compliant Substrates
,”
J. Mech. Phys. Solids
,
59
(
5
), pp.
1094
1114
.
30.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031019
.
31.
Cerda
,
E.
,
Ravi-Chandar
,
K.
, and
Mahadevan
,
L.
,
2002
, “
Thin Films: Wrinkling of an Elastic Sheet Under Tension
,”
Nature
,
419
(
6907
), pp.
579
580
.
32.
Cerda
,
E.
, and
Mahadevan
,
L.
,
2003
, “
Geometry and Physics of Wrinkling
,”
Phys. Rev. Lett.
,
90
(
7
), p.
074302
.
33.
Greaves
,
G. N.
,
Greer
,
A.
,
Lakes
,
R.
, and
Rouxel
,
T.
,
2011
, “
Poisson's Ratio and Modern Materials
,”
Nat. Mater.
,
10
(
11
), pp.
823
837
.
34.
Cohen
,
Y.
,
Albalak
,
R.
,
Dair
,
B.
,
Capel
,
M.
, and
Thomas
,
E.
,
2000
, “
Deformation of Oriented Lamellar Block Copolymer Films
,”
Macromolecules
,
33
(
1
), pp.
6502
6516
.
35.
Hermel
,
T.
,
Hahn
,
S.
,
Chaffin
,
K.
,
Gerberich
,
W.
, and
Bates
,
F.
,
2003
, “
Role of Molecular Architecture in Mechanical Failure of Glassy/Semicrystalline Block Copolymer: CEC Versus CECEC Lamellae
,”
Macromolecules
,
36
(
1
), pp.
2190
2193
.
36.
Read
,
D.
,
Duckett
,
R.
,
Sweeney
,
J.
, and
McLeish
,
T.
,
1999
, “
The Chevron Folding Instability in Thermoplastic Elastomers and Other Layered Materials
,”
J. Phys. D: Appl. Phys.
,
32
(
16
), pp.
2087
2099
.
37.
Makke
,
A.
,
Perez
,
M.
,
Lame
,
O.
, and
Barrat
,
J.-L.
,
2012
, “
Nanoscale Buckling Deformation in Layered Copolymer Materials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
3
), pp.
680
685
.
38.
Zhao
,
Y.
,
Cao
,
Y.
,
Feng
,
X.
, and
Ma
,
K.
,
2014
, “
Axial Compression-Induced Wrinkles on a Core-Shell Soft Cylinder: Theoretical Analysis, Simulations and Experiments
,”
J. Mech. Phys. Solids
,
73
(
12
), pp.
212
227
.
39.
Li
,
Y.
,
Kröger
,
M.
, and
Liu
,
W. K.
,
2012
, “
Nanoparticle Effect on the Dynamics of Polymer Chains and Their Entanglement Network
,”
Phys. Rev. Lett.
,
109
(
11
), p.
118001
.
40.
Curgul
,
S.
,
Van Vliet
,
K. J.
, and
Rutledge
,
G. C.
,
2007
, “
Molecular Dynamics Simulation of Size-Dependent Structural and Thermal Properties of Polymer Nanofibers
,”
Macromolecules
,
40
(
23
), pp.
8483
8489
.
41.
Li
,
Y.
,
Abberton
,
B. C.
,
Kröger
,
M.
, and
Liu
,
W. K.
,
2013
, “
Challenges in Multiscale Modeling of Polymer Dynamics
,”
Polymers
,
5
(
2
), pp.
751
832
.
42.
Kröger
,
M.
,
2005
, “
Shortest Multiple Disconnected Path for the Analysis of Entanglements in Two- and Three-Dimensional Polymeric Systems
,”
Comput. Phys. Commun.
,
168
(
3
), pp.
209
232
.
43.
Li
,
Y.
,
Kröger
,
M.
, and
Liu
,
W. K.
,
2011
, “
Primitive Chain Network Study on Uncrosslinked and Crosslinked Cis-Polyisoprene Polymers
,”
Polymer
,
52
(
25
), pp.
5867
5878
.
44.
Li
,
Y.
,
Tang
,
S.
,
Abberton
,
B. C.
,
Kröger
,
M.
,
Burkhart
,
C.
,
Jiang
,
B.
,
Papakonstantopoulos
,
G. J.
,
Poldneff
,
M.
, and
Liu
,
W. K.
,
2012
, “
A Predictive Multiscale Computational Framework for Viscoelastic Properties of Linear Polymers
,”
Polymer
,
53
(
25
), pp.
5935
5952
.
45.
Rubinstein
,
M.
, and
Panyukov
,
S.
,
2002
, “
Elasticity of Polymer Networks
,”
Macromolecules
,
35
(
17
), pp.
6670
6686
.
46.
Xia
,
W.
, and
Keten
,
S.
,
2015
, “
Size-Dependent Mechanical Behavior of Free-Standing Glassy Polymer Thin Films
,”
J. Mater. Res.
,
30
(
01
), pp.
36
45
.
47.
Belytschko
,
T.
,
Moran
,
B.
, and
Liu
,
W. K.
,
1999
,
Nonlinear Finite Element Analysis for Continua and Structures
, Vol.
1
,
Wiley
,
Chichester, UK
.
48.
Hill
,
R.
, and
Hutchinson
,
J.
,
1975
, “
Bifurcation Phenomena in the Plane Strain Tension Test
,”
J. Mech. Phys. Solids
,
23
(
1
), pp.
239
264
.
49.
Storen
,
S.
, and
Rice
,
J.
,
1975
, “
Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
23
(
1
), pp.
421
441
.
50.
Bertoldi
,
K.
,
Boyce
,
M.
,
Deschanel
,
S.
,
Prange
,
S.
, and
Mullin
,
T.
,
2008
, “
Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2642
2668
.
51.
Li
,
Y.
,
Qiu
,
X.
,
Yin
,
Y.
,
Yang
,
F.
, and
Fan
,
Q.
,
2010
, “
The Elastic Buckling of Super-Graphene and Super-Square Carbon Nanotube Networks
,”
Phys. Lett. A
,
374
(
15
), pp.
1773
1778
.
52.
Hohlfeld
,
E.
, and
Mahadevan
,
L.
,
2011
, “
Unfolding the Sulcus
,”
Phys. Rev. Lett.
,
106
(
10
), p.
105702
.
53.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Formation of Creases on the Surfaces of Elastomers and Gels
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111901
.
54.
Naraghi
,
M.
,
Chasiotis
,
I.
,
Kahn
,
H.
,
Wen
,
Y.
, and
Dzenis
,
Y.
,
2007
, “
Novel Method for Mechanical Characterization of Polymeric Nanofibers
,”
Rev. Sci. Instrum.
,
78
(
8
), p.
085108
.
55.
Naraghi
,
M.
,
Kolluru
,
P. V.
, and
Chasiotis
,
I.
,
2014
, “
Time and Strain Rate Dependent Mechanical Behavior of Individual Polymeric Nanofibers
,”
J. Mech. Phys. Solids
,
62
, pp.
257
275
.
56.
Tang
,
S.
,
Greene
,
M. S.
, and
Liu
,
W. K.
,
2012
, “
A Renormalization Approach to Model Interaction in Microstructured Solids: Application to Porous Elastomer
,”
Comput. Methods Appl. Mech. Eng.
,
217
, pp.
213
225
.
57.
Tang
,
S.
,
Greene
,
M. S.
, and
Liu
,
W. K.
,
2012
, “
Two-Scale Mechanism-Based Theory of Nonlinear Viscoelasticity
,”
J. Mech. Phys. Solids
,
60
(
2
), pp.
199
226
.
58.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
59.
Bergström
,
J.
, and
Boyce
,
M.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
60.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.
61.
Liu
,
B.
,
Zhang
,
L.
, and
Gao
,
H.
,
2006
, “
Poisson Ratio Can Play a Crucial Role in Mechanical Properties of Biocomposites
,”
Mech. Mater.
,
38
(
12
), pp.
1128
1142
.
62.
Wang
,
X.-S.
,
Li
,
Y.
, and
Shi
,
Y.-F.
,
2008
, “
Effects of Sandwich Microstructures on Mechanical Behaviors of Dragonfly Wing Vein
,”
Compos. Sci. Technol.
,
68
(
1
), pp.
186
192
.
63.
Kremer
,
K.
, and
Grest
,
G. S.
,
1990
, “
Dynamics of Entangled Linear Polymer Melts: A Molecular-Dynamics Simulation
,”
J. Chem. Phys.
,
92
(
8
), pp.
5057
5086
.
64.
Weeks
,
J. D.
,
Chandler
,
D.
, and
Andersen
,
H. C.
,
1971
, “
Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids
,”
J. Chem. Phys.
,
54
(
12
), pp.
5237
5247
.
65.
Baljon
,
A. R.
,
Van Weert
,
M. H.
,
DeGraaff
,
R. B.
, and
Khare
,
R.
,
2005
, “
Glass Transition Behavior of Polymer Films of Nanoscopic Dimensions
,”
Macromolecules
,
38
(
6
), pp.
2391
2399
.
66.
Morita
,
H.
,
Tanaka
,
K.
,
Kajiyama
,
T.
,
Nishi
,
T.
, and
Doi
,
M.
,
2006
, “
Study of the Glass Transition Temperature of Polymer Surface by Coarse-Grained Molecular Dynamics Simulation
,”
Macromolecules
,
39
(
18
), pp.
6233
6237
.
67.
Barrat
,
J.-L.
,
Baschnagel
,
J.
, and
Lyulin
,
A.
,
2010
, “
Molecular Dynamics Simulations of Glassy Polymers
,”
Soft Matter
,
6
(
15
), pp.
3430
3446
.
68.
Toepperwein
,
G. N.
,
Karayiannis
,
N. C.
,
Riggleman
,
R. A.
,
Kröger
,
M.
, and
de Pablo
,
J. J.
,
2011
, “
Influence of Nanorod Inclusions on Structure and Primitive Path Network of Polymer Nanocomposites at Equilibrium and Under Deformation
,”
Macromolecules
,
44
(
4
), pp.
1034
1045
.
69.
Kröger
,
M.
, and
Hess
,
S.
,
2000
, “
Rheological Evidence for a Dynamical Crossover in Polymer Melts Via Nonequilibrium Molecular Dynamics
,”
Phys. Rev. Lett.
,
85
(
5
), pp.
1128
1131
.
70.
Hoy
,
R. S.
, and
Robbins
,
M. O.
,
2006
, “
Strain Hardening of Polymer Glasses: Effect of Entanglement Density, Temperature, and Rate
,”
J. Polym. Sci., Part B: Polym. Phys.
,
44
(
24
), pp.
3487
3500
.
71.
Hoy
,
R. S.
,
Foteinopoulou
,
K.
, and
Kröger
,
M.
,
2009
, “
Topological Analysis of Polymeric Melts: Chain-Length Effects and Fast-Converging Estimators for Entanglement Length
,”
Phys. Rev. E
,
80
(
3
), p.
031803
.
72.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
73.
Kröger
,
M.
,
1999
, “
Efficient Hybrid Algorithm for the Dynamic Creation of Wormlike Chains in Solutions, Brushes, Melts and Glasses
,”
Comput. Phys. Commun.
,
118
(
2
), pp.
278
298
.
74.
Greene
,
M. S.
,
Li
,
Y.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2014
, “
The Archetype-Genome Exemplar in Molecular Dynamics and Continuum Mechanics
,”
Comput. Mech.
,
53
(
4
), pp.
687
737
.
75.
Li
,
Y.
,
Kröger
,
M.
, and
Liu
,
W. K.
,
2014
, “
Dynamic Structure of Unentangled Polymer Chains in the Vicinity of Non-Attractive Nanoparticles
,”
Soft Matter
,
10
, pp.
1723
1737
.
76.
Sides
,
S. W.
,
Grest
,
G. S.
,
Stevens
,
M. J.
, and
Plimpton
,
S. J.
,
2004
, “
Effect of End-Tethered Polymers on Surface Adhesion of Glassy Polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
42
(
2
), pp.
199
208
.
You do not currently have access to this content.