We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. The DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

References

References
1.
Johnson
,
C.
,
Ruud
,
J.
,
Bruce
,
R.
, and
Wortman
,
D.
,
1998
, “
Relationships Between Residual Stress, Microstructure and Mechanical Properties of Electron Beam–Physical Vapor Deposition Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
108–109
, pp.
80
85
.
2.
Nave
,
M. D.
, and
Barnett
,
M. R.
,
2004
, “
Microstructures and Textures of Pure Magnesium Deformed in Plane-Strain Compression
,”
Scr. Mater.
,
51
(
9
), pp.
881
885
.
3.
Rastogi
,
P.
,
2000
,
Photomechanics
,
Springer
,
Berlin
.
4.
Grediac
,
M.
,
2004
, “
The Use of Full-Field Measurement Methods in Composite Material Characterization: Interest and Limitations
,”
Composites, Part A
,
35
(
7
), pp.
751
761
.
5.
Hung
,
Y.
, and
Ho
,
H.
,
2005
, “
Shearography: An Optical Measurement Technique and Applications
,”
Mater. Sci. Eng.: R
,
49
(
3
), pp.
61
87
.
6.
Avril
,
S.
,
Bonnet
,
M.
,
Bretelle
,
A.-S.
,
Grediac
,
M.
,
Hild
,
F.
,
Ienny
,
P.
,
Latourte
,
F.
,
Lemosse
,
D.
,
Pagano
,
S.
, and
Pagnacco
,
E.
,
2008
, “
Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements
,”
Exp. Mech.
,
48
(
4
), pp.
381
402
.
7.
McClung
,
A. J.
,
Tandon
,
G.
,
Goecke
,
K.
, and
Baur
,
J.
,
2011
, “
Non-Contact Technique for Characterizing Full-Field Surface Deformation of Shape Memory Polymers at Elevated and Room Temperatures
,”
Polym. Test.
,
30
(
1
), pp.
140
149
.
8.
Chu
,
T.
,
Ranson
,
W.
, and
Sutton
,
M.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
(
3
), pp.
232
244
.
9.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
,
2009
, “
Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review
,”
Meas. Sci. Technol.
,
20
(
6
), p.
062001
.
10.
Peters
,
W. H.
, and
Ranson
,
W. F.
,
1982
, “
Digital Imaging Techniques in Experimental Stress-Analysis
,”
Opt. Eng.
,
21
(
3
), pp.
427
431
.
11.
Sutton
,
M. A.
,
Cheng
,
M. Q.
,
Peters
,
W. H.
,
Chao
,
Y. J.
, and
Mcneill
,
S. R.
,
1986
, “
Application of an Optimized Digital Correlation Method to Planar Deformation Analysis
,”
Image Vision Comput.
,
4
(
3
), pp.
143
150
.
12.
Delacourt
,
C.
,
Allemand
,
P.
,
Casson
,
B.
, and
Vadon
,
H.
,
2004
, “
Velocity Field of the ‘La Clapière’ Landslide Measured by the Correlation of Aerial and QuickBird Satellite Images
,”
Geophys. Res. Lett.
,
31
(
15
), p.
L15619
.
13.
Krehbiel
,
J. D.
,
Lambros
,
J.
,
Viator
,
J.
, and
Sottos
,
N.
,
2010
, “
Digital Image Correlation for Improved Detection of Basal Cell Carcinoma
,”
Exp. Mech.
,
50
(
6
), pp.
813
824
.
14.
Chasiotis
,
I.
, and
Knauss
,
W. G.
,
2002
, “
A New Microtensile Tester for the Study of MEMS Materials With the Aid of Atomic Force Microscopy
,”
Exp. Mech.
,
42
(
1
), pp.
51
57
.
15.
Knauss
,
W. G.
,
Chasiotis
,
I.
, and
Huang
,
Y.
,
2003
, “
Mechanical Measurements at the Micron and Nanometer Scales
,”
Mech. Mater.
,
35
(
3–6
), pp.
217
231
.
16.
Chasiotis
,
I.
,
2004
, “
Mechanics of Thin Films and Microdevices
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
2
), pp.
176
188
.
17.
Cho
,
S.
,
Chasiotis
,
I.
,
Friedmann
,
T. A.
, and
Sullivan
,
J. P.
,
2005
, “
Young's Modulus, Poisson's Ratio and Failure Properties of Tetrahedral Amorphous Diamond-Like Carbon for MEMS Devices
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
728
735
.
18.
Cho
,
S.
,
Cárdenas-García
,
J. F.
, and
Chasiotis
,
I.
,
2005
, “
Measurement of Nanodisplacements and Elastic Properties of MEMS Via the Microscopic Hole Method
,”
Sens. Actuators, A
,
120
(
1
), pp.
163
171
.
19.
Chang
,
S.
,
Wang
,
C. S.
,
Xiong
,
C. Y.
, and
Fang
,
J.
,
2005
, “
Nanoscale In-Plane Displacement Evaluation by AFM Scanning and Digital Image Correlation Processing
,”
Nanotechnology
,
16
(
4
), pp.
344
349
.
20.
Sun
,
Y.
, and
Pang
,
J. H.
,
2006
, “
AFM Image Reconstruction for Deformation Measurements by Digital Image Correlation
,”
Nanotechnology
,
17
(
4
), pp.
933
939
.
21.
Cho
,
S. W.
, and
Chasiotis
,
I.
,
2007
, “
Elastic Properties and Representative Volume Element of Polycrystalline Silicon for MEMS
,”
Exp. Mech.
,
47
(
1
), pp.
37
49
.
22.
Li
,
X. D.
,
Xu
,
W. J.
,
Sutton
,
M. A.
, and
Mello
,
M.
,
2007
, “
In Situ Nanoscale In-Plane Deformation Studies of Ultrathin Polymeric Films During Tensile Deformation Using Atomic Force Microscopy and Digital Image Correlation Techniques
,”
IEEE Trans. Nanotechnol.
,
6
(
1
), pp.
4
12
.
23.
Sun
,
Y.
,
Pang
,
J. H.
, and
Fan
,
W.
,
2007
, “
Nanoscale Deformation Measurement of Microscale Interconnection Assemblies by a Digital Image Correlation Technique
,”
Nanotechnology
,
18
(
39
), p.
395504
.
24.
Vendroux
,
G.
, and
Knauss
,
W.
,
1998
, “
Submicron Deformation Field Measurements: Part 1. Developing a Digital Scanning Tunneling Microscope
,”
Exp. Mech.
,
38
(
1
), pp.
18
23
.
25.
Vendroux
,
G.
, and
Knauss
,
W.
,
1998
, “
Submicron Deformation Field Measurements: Part 2. Improved Digital Image Correlation
,”
Exp. Mech.
,
38
(
2
), pp.
86
92
.
26.
Vendnroux
,
G.
,
Schmidt
,
N.
, and
Knauss
,
W.
,
1998
, “
Submicron Deformation Field Measurements: Part 3. Demonstration of Deformation Determinations
,”
Exp. Mech.
,
38
(
3
), pp.
154
160
.
27.
Kang
,
J.
,
Jain
,
M.
,
Wilkinson
,
D. S.
, and
Embury
,
J. D.
,
2005
, “
Microscopic Strain Mapping Using Scanning Electron Microscopy Topography Image Correlation at Large Strain
,”
J. Strain Anal. Eng. Des.
,
40
(
6
), pp.
559
570
.
28.
Sabate
,
N.
,
Vogel
,
D.
,
Gollhardt
,
A.
,
Keller
,
J.
,
Michel
,
B.
,
Cane
,
C.
,
Gracia
,
I.
, and
Morante
,
J. R.
,
2006
, “
Measurement of Residual Stresses in Micromachined Structures in a Microregion
,”
Appl. Phys. Lett.
,
88
(
7
), p.
071910
.
29.
Lagattu
,
F.
,
Bridier
,
F.
,
Villechaise
,
P.
, and
Brillaud
,
J.
,
2006
, “
In-Plane Strain Measurements on a Microscopic Scale by Coupling Digital Image Correlation and an In Situ SEM Technique
,”
Mater. Charact.
,
56
(
1
), pp.
10
18
.
30.
Sutton
,
M. A.
,
Li
,
N.
,
Garcia
,
D.
,
Cornille
,
N.
,
Orteu
,
J. J.
,
McNeill
,
S. R.
,
Schreier
,
H. W.
, and
Li
,
X.
,
2006
, “
Metrology in a Scanning Electron Microscope: Theoretical Developments and Experimental Validation
,”
Meas. Sci. Technol.
,
17
(
10
), pp.
2613
2622
.
31.
Sutton
,
M.
,
Li
,
N.
,
Joy
,
D.
,
Reynolds
,
A.
, and
Li
,
X.
,
2007
, “
Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part I: SEM Imaging at Magnifications From 200 to 10,000
,”
Exp. Mech.
,
47
(
6
), pp.
775
787
.
32.
Sutton
,
M. A.
,
Li
,
N.
,
Garcia
,
D.
,
Cornille
,
N.
,
Orteu
,
J.
,
McNeill
,
S.
,
Schreier
,
H.
,
Li
,
X.
, and
Reynolds
,
A. P.
,
2007
, “
Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part II: Experimental Validation for Magnifications From 200 to 10,000
,”
Exp. Mech.
,
47
(
6
), pp.
789
804
.
33.
Kammers
,
A. D.
, and
Daly
,
S.
,
2013
, “
Digital Image Correlation Under Scanning Electron Microscopy: Methodology and Validation
,”
Exp. Mech.
,
53
(
9
), pp.
1743
1761
.
34.
Kammers
,
A. D.
, and
Daly
,
S.
,
2013
, “
Self-Assembled Nanoparticle Surface Patterning for Improved Digital Image Correlation in a Scanning Electron Microscope
,”
Exp. Mech.
,
53
(
8
), pp.
1333
1341
.
35.
Guo
,
S.
,
Sutton
,
M.
,
Li
,
X.
,
Li
,
N.
, and
Wang
,
L.
,
2014
, “
SEM-DIC Based Nanoscale Thermal Deformation Studies of Heterogeneous Material
,”
Advancement of Optical Methods in Experimental Mechanics
, Vol.
3
,
Springer
,
New York
, pp.
145
150
.
36.
Jin
,
H.
,
Lu
,
W.
, and
Korellis
,
J.
,
2008
, “
Micro-Scale Deformation Measurement Using the Digital Image Correlation Technique and Scanning Electron Microscope Imaging
,”
J. Strain Anal. Eng. Des.
,
43
(
8
), pp.
719
728
.
37.
Tschopp
,
M.
,
Bartha
,
B.
,
Porter
,
W.
,
Murray
,
P.
, and
Fairchild
,
S.
,
2009
, “
Microstructure-Dependent Local Strain Behavior in Polycrystals Through In-Situ Scanning Electron Microscope Tensile Experiments
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2363
2368
.
38.
Sabate
,
N.
,
Vogel
,
D.
,
Gollhardt
,
A.
,
Keller
,
J.
,
Cane
,
C.
,
Gracia
,
I.
,
Morante
,
J. R.
, and
Michel
,
B.
,
2007
, “
Residual Stress Measurement on a MEMS Structure With High-Spatial Resolution
,”
J. Microelectromech. Syst.
,
16
(
2
), pp.
365
372
.
39.
Wang
,
Z.
,
2000
, “
Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies
,”
J. Phys. Chem. B
,
104
(
6
), pp.
1153
1175
.
40.
Williams
,
D. B.
, and
Carter
,
C. B.
,
2009
,
Transmission Electron Microscopy
,
Springer
,
New York
.
41.
Hÿtch
,
M.
,
Snoeck
,
E.
, and
Kilaas
,
R.
,
1998
, “
Quantitative Measurement of Displacement and Strain Fields From HREM Micrographs
,”
Ultramicroscopy
,
74
(
3
), pp.
131
146
.
42.
Snoeck
,
E.
,
Warot
,
B.
,
Ardhuin
,
H.
,
Rocher
,
A.
,
Casanove
,
M.
,
Kilaas
,
R.
, and
Hÿtch
,
M.
,
1998
, “
Quantitative Analysis of Strain Field in Thin Films From HRTEM Micrographs
,”
Thin Solid Films
,
319
(
1
), pp.
157
162
.
43.
Hÿtch
,
M.
,
Houdellier
,
F.
,
Hüe
,
F.
, and
Snoeck
,
E.
,
2008
, “
Nanoscale Holographic Interferometry for Strain Measurements in Electronic Devices
,”
Nature
,
453
(
7198
), pp.
1086
1089
.
44.
Zhang
,
P.
,
Istratov
,
A. A.
,
Weber
,
E. R.
,
Kisielowski
,
C.
,
He
,
H.
,
Nelson
,
C.
, and
Spence
,
J. C.
,
2006
, “
Direct Strain Measurement in a 65 nm Node Strained Silicon Transistor by Convergent-Beam Electron Diffraction
,”
Appl. Phys. Lett.
,
89
(
16
), p.
161907
.
45.
Jones
,
P.
,
Rackham
,
G.
, and
Steeds
,
J.
,
1977
, “
Higher Order Laue Zone Effects in Electron Diffraction and Their Use in Lattice Parameter Determination
,”
Proc. R. Soc. London, Ser. A
,
354
(
1677
), pp.
197
222
.
46.
Armigliato
,
A.
,
Balboni
,
R.
,
Carnevale
,
G.
,
Pavia
,
G.
,
Piccolo
,
D.
,
Frabboni
,
S.
,
Benedetti
,
A.
, and
Cullis
,
A.
,
2003
, “
Application of Convergent Beam Electron Diffraction to Two-Dimensional Strain Mapping in Silicon Devices
,”
Appl. Phys. Lett.
,
82
(
13
), pp.
2172
2174
.
47.
Usuda
,
K.
,
Numata
,
T.
,
Irisawa
,
T.
,
Hirashita
,
N.
, and
Takagi
,
S.
,
2005
, “
Strain Characterization in SOI and Strained-Si on SGOI MOSFET Channel Using Nano-Beam Electron Diffraction (NBD)
,”
Mater. Sci. Eng.: B
,
124–125
, pp.
143
147
.
48.
Uesugi
,
F.
,
Hokazono
,
A.
, and
Takeno
,
S.
,
2011
, “
Evaluation of Two-Dimensional Strain Distribution by STEM/NBD
,”
Ultramicroscopy
,
111
(
8
), pp.
995
998
.
49.
Orlov
,
A.
,
Granovsky
,
A.
,
Balagurov
,
L.
,
Kulemanov
,
I.
,
Parkhomenko
,
Y. N.
,
Perov
,
N.
,
Gan'shina
,
E.
,
Bublik
,
V.
,
Shcherbachev
,
K.
, and
Kartavykh
,
A.
,
2009
, “
Structure, Electrical and Magnetic Properties, and the Origin of the Room Temperature Ferromagnetism in Mn-Implanted Si
,”
J. Exp. Theor. Phys.
,
109
(
4
), pp.
602
608
.
50.
Wang
,
J. W.
,
He
,
Y.
,
Fan
,
F.
,
Liu
,
X. H.
,
Xia
,
S.
,
Liu
,
Y.
,
Harris
,
C. T.
,
Li
,
H.
,
Huang
,
J. Y.
,
Mao
,
S. X.
, and
Zhu
,
T.
,
2013
, “
Two-Phase Electrochemical Lithiation in Amorphous Silicon
,”
Nano Lett.
,
13
(
2
), pp.
709
715
.
51.
Peters
,
W.
, and
Ranson
,
W.
,
1982
, “
Digital Imaging Techniques in Experimental Stress Analysis
,”
Opt. Eng.
,
21
(
3
), pp.
427
431
.
52.
Sutton
,
M.
,
Wolters
,
W.
,
Peters
,
W.
,
Ranson
,
W.
, and
McNeill
,
S.
,
1983
, “
Determination of Displacements Using an Improved Digital Correlation Method
,”
Image Vision Comput.
,
1
(
3
), pp.
133
139
.
53.
Lu
,
H.
, and
Cary
,
P.
,
2000
, “
Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient
,”
Exp. Mech.
,
40
(
4
), pp.
393
400
.
54.
Bornert
,
M.
,
Brémand
,
F.
,
Doumalin
,
P.
,
Dupré
,
J.-C.
,
Fazzini
,
M.
,
Grédiac
,
M.
,
Hild
,
F.
,
Mistou
,
S.
,
Molimard
,
J.
, and
Orteu
,
J.-J.
,
2009
, “
Assessment of Digital Image Correlation Measurement Errors: Methodology and Results
,”
Exp. Mech.
,
49
(
3
), pp.
353
370
.
55.
Bruck
,
H.
,
McNeill
,
S.
,
Sutton
,
M. A.
, and
Peters Iii
,
W.
,
1989
, “
Digital Image Correlation Using Newton–Raphson Method of Partial Differential Correction
,”
Exp. Mech.
,
29
(
3
), pp.
261
267
.
56.
Sun
,
Y.
,
Pang
,
J. H.
,
Wong
,
C. K.
, and
Su
,
F.
,
2005
, “
Finite Element Formulation for a Digital Image Correlation Method
,”
Appl. Opt.
,
44
(
34
), pp.
7357
7363
.
57.
Besnard
,
G.
,
Hild
,
F.
, and
Roux
,
S.
,
2006
, “
‘Finite-Element’ Displacement Fields Analysis From Digital Images: Application to Portevin–Le Châtelier Bands
,”
Exp. Mech.
,
46
(
6
), pp.
789
803
.
58.
Réthoré
,
J.
,
Roux
,
S.
, and
Hild
,
F.
,
2010
, “
Hybrid Analytical and Extended Finite Element Method (HAX-FEM): A New Enrichment Procedure for Cracked Solids
,”
Int. J. Numer. Methods Eng.
,
81
(
3
), pp.
269
285
.
59.
Réthoré
,
J.
,
Roux
,
S.
, and
Hild
,
F.
,
2010
, “
Mixed-Mode Crack Propagation Using a Hybrid Analytical and Extended Finite Element Method
,”
C. R. Méc.
,
338
(
3
), pp.
121
126
.
60.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
(
1
), pp.
109
114
.
61.
Hild
,
F.
, and
Roux
,
S.
,
2012
, “
Comparison of Local and Global Approaches to Digital Image Correlation
,”
Exp. Mech.
,
52
(
9
), pp.
1503
1519
.
62.
Pan
,
B.
,
Wang
,
B.
,
Lubineau
,
G.
, and
Moussawi
,
A.
,
2015
, “
Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation
,”
Exp. Mech.
,
55
(
5
), pp.
887
901
.
63.
Reimer
,
L.
,
2013
,
Transmission Electron Microscopy: Physics of Image Formation and Microanalysis
,
Springer
,
New York
.
64.
Muller
,
D. A.
,
Kirkland
,
E. J.
,
Thomas
,
M. G.
,
Grazul
,
J. L.
,
Fitting
,
L.
, and
Weyland
,
M.
,
2006
, “
Room Design for High-Performance Electron Microscopy
,”
Ultramicroscopy
,
106
(
11
), pp.
1033
1040
.
65.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
66.
Beaulieu
,
L.
,
Hatchard
,
T.
,
Bonakdarpour
,
A.
,
Fleischauer
,
M.
, and
Dahn
,
J.
,
2003
, “
Reaction of Li With Alloy Thin Films Studied by In Situ AFM
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
A1457
A1464
.
67.
He
,
Y.
,
Yu
,
X.
,
Li
,
G.
,
Wang
,
R.
,
Li
,
H.
,
Wang
,
Y.
,
Gao
,
H.
, and
Huang
,
X.
,
2012
, “
Shape Evolution of Patterned Amorphous and Polycrystalline Silicon Microarray Thin Film Electrodes Caused by Lithium Insertion and Extraction
,”
J. Power Sources
,
216
, pp.
131
138
.
68.
Becker
,
C. R.
,
Strawhecker
,
K. E.
,
McAllister
,
Q. P.
, and
Lundgren
,
C. A.
,
2013
, “
In Situ Atomic Force Microscopy of Lithiation and Delithiation of Silicon Nanostructures for Lithium Ion Batteries
,”
ACS Nano
,
7
(
10
), pp.
9173
9182
.
69.
Laaziri
,
K.
,
Kycia
,
S.
,
Roorda
,
S.
,
Chicoine
,
M.
,
Robertson
,
J.
,
Wang
,
J.
, and
Moss
,
S.
,
1999
, “
High-Energy X-Ray Diffraction Study of Pure Amorphous Silicon
,”
Phys. Rev. B
,
60
(
19
), pp.
13520
13533
.
70.
Wakagi
,
M.
,
Ogata
,
K.
, and
Nakano
,
A.
,
1994
, “
Structural Study of a-Si and a-Si: H Films by EXAFS and Raman-Scattering Spectroscopy
,”
Phys. Rev. B
,
50
(
15
), pp.
10666
10671
.
71.
Kugler
,
S.
,
Pusztai
,
L.
,
Rosta
,
L.
,
Chieux
,
P.
, and
Bellissent
,
R.
,
1993
, “
Structure of Evaporated Pure Amorphous Silicon: Neutron-Diffraction and Reverse Monte Carlo Investigations
,”
Phys. Rev. B
,
48
(
10
), pp.
7685
7688
.
You do not currently have access to this content.