The cell mapping methods were originated by Hsu in 1980s for global analysis of nonlinear dynamical systems that can have multiple steady-state responses including equilibrium states, periodic motions, and chaotic attractors. The cell mapping methods have been applied to deterministic, stochastic, and fuzzy dynamical systems. Two important extensions of the cell mapping method have been developed to improve the accuracy of the solutions obtained in the cell state space: the interpolated cell mapping (ICM) and the set-oriented method with subdivision technique. For a long time, the cell mapping methods have been applied to dynamical systems with low dimension until now. With the advent of cheap dynamic memory and massively parallel computing technologies, such as the graphical processing units (GPUs), global analysis of moderate- to high-dimensional nonlinear dynamical systems becomes feasible. This paper presents a parallel cell mapping method for global analysis of nonlinear dynamical systems. The simple cell mapping (SCM) and generalized cell mapping (GCM) are implemented in a hybrid manner. The solution process starts with a coarse cell partition to obtain a covering set of the steady-state responses, followed by the subdivision technique to enhance the accuracy of the steady-state responses. When the cells are small enough, no further subdivision is necessary. We propose to treat the solutions obtained by the cell mapping method on a sufficiently fine grid as a database, which provides a basis for the ICM to generate the pointwise approximation of the solutions without additional numerical integrations of differential equations. A modified global analysis of nonlinear systems with transient states is developed by taking advantage of parallel computing without subdivision. To validate the parallelized cell mapping techniques and to demonstrate the effectiveness of the proposed method, a low-dimensional dynamical system governed by implicit mappings is first presented, followed by the global analysis of a three-dimensional plasma model and a six-dimensional Lorenz system. For the six-dimensional example, an error analysis of the ICM is conducted with the Hausdorff distance as a metric.

References

References
1.
Hsu
,
C. S.
,
1980
, “
A Theory of Cell-to-Cell Mapping Dynamical Systems
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
931
939
.
2.
Lee
,
W. K.
,
1992
, “
Domains of Attraction of System of Nonlinearly Coupled Ship Motions by Simple Cell Mapping
,”
ASME J. Offshore Mech. Arct. Eng.
,
114
(
1
), pp.
22
27
.
3.
Spek
,
J. A. W. V. D.
,
Hoon
,
C. A. L. D.
,
Kraker
,
A. D.
, and
Campen
,
D. H. V.
,
1994
, “
Application of Cell Mapping Methods to a Discontinuous Dynamic System
,”
Nonlinear Dyn.
,
6
(
1
), pp.
87
99
.
4.
Wang
,
Y.
,
Zheng
,
H.
,
Guan
,
Z.
, and
Gao
,
F.
,
2011
, “
Application of Cell Mapping Method in Global Analysis of Fault Gear System
,”
2011 International Conference on Network Computing and Information Security (NCIS)
, Vol.
2
, pp.
352
354
.
5.
Ding
,
Q.
,
Cooper
,
J. E.
, and
Leung
,
A. Y. T.
,
2005
, “
Application of an Improved Cell Mapping Method to Bilinear Stiffness Aeroelastic Systems
,”
J. Fluids Struct.
,
20
(
1
), pp.
35
49
.
6.
He
,
Q.
,
Xu
,
W.
,
Rong
,
H.
, and
Fang
,
T.
,
2004
, “
Stochastic Bifurcation in Duffing-Van der Pol Oscillators
,”
Phys. A
,
338
(
3
), pp.
319
334
.
7.
Xu
,
W.
, and
Yue
,
X.
,
2010
, “
Global Analyses of Crisis and Stochastic Bifurcation in the Hardening Helmholtz–Duffing Oscillator
,”
Sci. China Technol. Sci.
,
53
(
3
), pp.
664
673
.
8.
Yue
,
X.
, and
Xu
,
W.
,
2010
, “
Stochastic Bifurcation of an Asymmetric Single-Well Potential Duffing Oscillator Under Bounded Noise Excitation
,”
Int. J. Bifurcation Chaos
,
20
(
10
), pp.
3359
3371
.
9.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1990
, “
The Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short-Time Gaussian Approximation
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
1018
1025
.
10.
Sun
,
J. Q.
,
1995
, “
Random Vibration Analysis of a Non-Linear System With Dry Friction Damping by the Short-Time Gaussian Cell Mapping Method
,”
J. Sound Vib.
,
180
(
5
), pp.
785
795
.
11.
Hong
,
L.
, and
Sun
,
J. Q.
,
2006
, “
Bifurcations of a Forced Duffing Oscillator in the Presence of Fuzzy Noise by the Generalized Cell Mapping Method
,”
Int. J. Bifurcation Chaos
,
16
(
10
), pp.
3043
3051
.
12.
Hong
,
L.
, and
Sun
,
J. Q.
,
2006
, “
Bifurcations of Fuzzy Nonlinear Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
11
(1), pp.
1
12
.
13.
Hong
,
L.
, and
Sun
,
J.-Q.
,
2006
, “
Bifurcations of Forced Oscillators With Fuzzy Uncertainties by the Generalized Cell Mapping Method
,”
Chaos, Solitons Fractals
,
27
(
4
), pp.
895
904
.
14.
Sun
,
J.-Q.
, and
Luo
,
A. C. J.
,
2012
,
Global Analysis of Nonlinear Dynamics
,
Springer
,
New York
.
15.
Flashner
,
H.
, and
Burns
,
T. F.
,
1990
, “
Spacecraft Momentum Unloading—The Cell Mapping Approach
,”
J. Guid., Control, Dyn.
,
13
(
1
), pp.
89
98
.
16.
Wang
,
F. Y.
, and
Lever
,
P. J. A.
,
1994
, “
A Cell Mapping Method for General Optimum Trajectory Planning of Multiple Robotic Arms
,”
Rob. Auton. Syst.
,
12
(1–2), pp.
15
27
.
17.
Yen
,
J.-Y.
,
Chao
,
W.-C.
, and
Lu
,
S.-S.
,
1992
, “
Computer Disk File Track Accessing Controller Design Based Upon Cell-to-Cell Mapping
,”
American Control Conference
(
ACC
), Chicago, IL, June 24–26, Vol.
1
, pp.
216
220
.
18.
Hernández
,
C.
,
Naranjani
,
Y.
,
Sardahi
,
Y.
,
Liang
,
W.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2013
, “
Simple Cell Mapping Method for Multiobjective Optimal PID Control Design
,”
Int. J. Dyn. Control
,
1
(
3
), pp.
231
238
.
19.
Xiong
,
F.-R.
,
Qin
,
Z.-C.
,
Xue
,
Y.
,
Schütze
,
O.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2014
, “
Multi-Objective Optimal Design of Feedback Controls for Dynamical Systems With Hybrid Simple Cell Mapping Algorithm
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
5
), pp.
1465
1473
.
20.
Eason
,
R. P.
, and
Dick
,
A. J.
,
2014
, “
A Parallelized Multi-Degrees-of-Freedom Cell Mapping Method
,”
Nonlinear Dyn.
,
77
(
3
), pp.
467
479
.
21.
Dellnitz
,
M.
, and
Hohmann
,
A.
,
1997
, “
A Subdivision Algorithm for the Computation of Unstable Manifolds and Global Attractors
,”
Numer. Math.
,
75
(
3
), pp.
293
317
.
22.
Dellnitz
,
M.
, and
Junge
,
O.
,
1998
, “
An Adaptive Subdivision Technique for the Approximation of Attractors and Invariant Measures
,”
Comput. Visualization Sci.
,
1
(
2
), pp.
63
68
.
23.
Neumann
,
N.
,
Sattel
,
T.
, and
Wallaschek
,
J.
,
2007
, “
On Set-Oriented Numerical Methods for Global Analysis of Non-Smooth Mechanical Systems
,”
J. Vib. Control
,
13
(
9–10
), pp.
1393
1405
.
24.
Dellnitz
,
M.
, and
Junge
,
O.
,
2002
, “
Set Oriented Numerical Methods for Dynamical Systems
,”
Handbook of Dynamical Systems
, Vol.
2
,
Elsevier
,
Amsterdam
, pp.
221
264
.
25.
Junge
,
O.
, and
Osinga
,
H. M.
,
2004
, “
A Set Oriented Approach to Global Optimal Control
,”
ESAIM Control, Optim. Calculus Var.
,
10
(2), pp.
259
270
.
26.
Grüune
,
L.
, and
Junge
,
H.
,
2005
, “
A Set Oriented Approach to Optimal Feedback Stabilization
,”
Syst. Control Lett.
,
54
(
2
), pp.
169
180
.
27.
Schütze
,
O.
,
Witting
,
K.
,
Ober-Blöbaum
,
S.
, and
Dellnitz
,
M.
,
2013
, “
Set Oriented Methods for the Numerical Treatment of Multiobjective Optimization Problems
,”
EVOLVE—A Bridge Between Probability, Set Oriented Numerics and Evolutionary Computation
, Vol.
447
,
Springer
,
Berlin
, pp.
187
219
.
28.
Blesken
,
M.
,
Rückert
,
U.
,
Steenken
,
D.
,
Witting
,
K.
, and
Dellnitz
,
M.
,
2009
, “
Multiobjective Optimization for Transistor Sizing of CMOS Logic Standard Cells Using Set-Oriented Numerical Techniques
,” 27th
NORCHIP
Conference, Trondheim, Norway, Nov. 16–17.
29.
Tongue
,
B. H.
,
1987
, “
On Obtaining Global Nonlinear System Characteristics Through Interpolated Cell Mapping
,”
Phys. D
,
28
(
3
), pp.
401
408
.
30.
Tongue
,
B. H.
, and
Gu
,
K.
,
1988
, “
Interpolated Cell Mapping of Dynamical Systems
,”
ASME J. Appl. Mech.
,
55
(2), pp.
461
466
.
31.
Tongue
,
B. H.
, and
Gu
,
K.
,
1988
, “
A Theoretical Basis for Interpolated Cell Mapping
,”
SIAM J. Appl. Math.
,
48
(
5
), pp.
1206
1214
.
32.
Lee
,
W. K.
, and
Hsu
,
C. S.
,
1994
, “
A Global Analysis of an Harmonically Excited Spring-Pendulum System With Internal Resonance
,”
J. Sound Vib.
,
171
(
3
), pp.
335
359
.
33.
Tongue
,
B.
, and
Gu
,
K.
,
1988
, “
A Higher Order Method of Interpolated Cell Mapping
,”
J. Sound Vib.
,
125
(
1
), pp.
169
179
.
34.
Ge
,
Z. M.
, and
Lee
,
S. C.
,
1997
, “
A Modified Interpolated Cell Mapping Method
,”
J. Sound Vib.
,
199
(
2
), pp.
189
206
.
35.
White
,
M.
, and
Tongue
,
B.
,
1995
, “
Application of Interpolated Cell Mapping to an Analysis of the Lorenz Equations
,”
J. Sound Vib.
,
188
(
2
), pp.
209
226
.
36.
Lee
,
W. K.
, and
Ghang
,
M. R.
,
1994
, “
Domains of Attraction of a Forced Beam by Interpolated Mapping
,”
ASME J. Appl. Mech.
,
61
(
1
), pp.
144
151
.
37.
Crespo
,
L. G.
, and
Sun
,
J. Q.
,
2000
, “
Solution of Fixed Final State Optimal Control Problems Via Simple Cell Mapping
,”
Nonlinear Dyn.
,
23
(4), pp.
391
403
.
38.
Dellnitz
,
M.
,
Schütze
,
O.
, and
Sertl
,
S.
,
2002
, “
Finding Zeros by Multilevel Subdivision Techniques
,”
IMA J. Numer. Anal.
,
22
(
2
), pp.
167
185
.
39.
Hsu
,
C. S.
,
1995
, “
Global Analysis of Dynamical Systems Using Posets and Digraphs
,”
Int. J. Bifurcation Chaos
,
5
(4), pp.
1085
1118
.
40.
Hong
,
L.
, and
Xu
,
J.
,
1999
, “
Crises and Chaotic Transients Studied by the Generalized Cell Mapping Digraph Method
,”
Phys. Lett. A
,
262
(
4–5
), pp.
361
375
.
41.
Hsu
,
C. S.
,
1982
, “
A Probabilistic Theory of Nonlinear Dynamical Systems Based on the Cell State Space Concept
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
895
902
.
42.
Zou
,
H.
, and
Xu
,
J.
,
2009
, “
Improved Generalized Cell Mapping for Global Analysis of Dynamical Systems
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
3
), pp.
787
800
.
43.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
C.
,
2009
,
Introduction to Algorithms
,
The MIT Press
,
Cambridge, MA
.
44.
Rodgers
,
D. P.
,
1985
, “
Improvements in Multiprocessor System Design
,”
SIGARCH Comput. Archit. News
,
13
(
3
), pp.
225
231
.
45.
Tarjan
,
R.
,
1972
, “
Depth-First Search and Linear Graph Algorithms
,”
SIAM J. Comput.
,
1
(
2
), pp.
146
160
.
46.
Hsu
,
C. S.
,
1987
,
Cell-to-Cell Mapping
,
Springer
,
New York
.
47.
Ray
,
A.
,
Ghosh
,
D.
, and
Chowdhury
,
A. R.
,
2009
, “
Topological Study of Multiple Coexisting Attractors in a Nonlinear System
,”
J. Phys. A: Math. Theor.
,
42
(
38
), p.
385102
.
48.
Musielak
,
Z. E.
, and
Musielak
,
D. E.
,
2009
, “
High-Dimensional Chaos in Dissipative and Driven Dynamical Systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
19
(
9
), pp.
2823
2869
.
49.
Sun
,
J.-Q.
, and
Hsu
,
C. S.
,
1988
, “
A Statistical Study of Generalized Cell Mapping
,”
ASME J. Appl. Mech.
,
55
(
3
), pp.
694
701
.
50.
Schütze
,
O.
,
Laumanns
,
M.
,
Tantar
,
E.
,
Coello Coello
,
C. A.
, and
Talbi
,
E.-G.
,
2010
, “
Using the Averaged Hausdorff Distance on Evolutionary Computation
,”
Evol. Comput.
,
18
(
1
), pp.
65
96
.
You do not currently have access to this content.