The axisymmetric inflation problem for a wrinkled membrane is solved by means of a simple nonlinear ordinary differential equation. The solution is illustrated in full details. Both the free and constrained cases are addressed, in the limit case where the membrane is fully wrinkled. In the constrained inflation problem, no slippage is allowed between the membrane and the constraining surfaces. It is shown that an actual membrane can in no way reach the fully wrinkled configuration during free inflation, regardless of the membrane's initial configuration and constituent material. The fully wrinkled solution is compared to some finite element results obtained by means of an expressly developed iterative–incremental procedure. When the values of the inflating pressure and length of the meridian lie within a suitable applicability range, the fully wrinkled solution may represent a reasonable approximation of the actual solution. A comparison with some numerical and experimental results available in the literature is illustrated.

References

References
1.
Wong
,
Y. W.
, and
Pellegrino
,
S.
,
2006
, “
Wrinkled Membranes Part III: Numerical Simulations
,”
J. Mech. Mater. Struct.
,
1
(
1
), pp.
63
95
.
2.
Tessler
,
A.
, and
Sleight
,
D. W.
,
2004
, “
Toward Effective Shell Modeling of Wrinkled Thin-Film Membranes Exhibiting Stress Concentrations
,”
AIAA
2004-1739.
3.
Wu
,
T.-Y.
, and
Ting
,
E. C.
,
2008
, “
Large Deflection Analysis of 3D Membrane Structures by a 4-Node Quadrilateral Intrinsic Element
,”
Thin-Walled Struct.
,
46
(
3
), pp.
261
275
.
4.
Mansfield
,
E. H.
,
1969
, “
Tension Field Theory, a New Approach Which Shows Its Duality With Inextensional Theory
,”
Applied Mechanics, Proceedings of the Twelfth International Congress of Applied Mechanics
, Stanford University, Aug. 26–31, M. Hetényi and W. G. Vincenti, eds., Springer, Berlin, pp. 305–320.
5.
Wu
,
C. H.
,
1974
, “
Plane Linear Wrinkle Elasticity Without Body Force
,”
Department of Materials Engineering, University of Illinois
,
Chicago
.
6.
Jarasjarungkiat
,
A.
,
Wüchner
,
R.
, and
Bletzinger
,
K. U.
,
2008
, “
A Wrinkling Model Based on Material Modification for Isotropic and Orthotropic Membranes
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
6–8
), pp.
773
788
.
7.
Kang
,
S.
, and
Im
,
S.
,
1997
, “
Finite Element Analysis of Wrinkling Membranes
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
263
269
.
8.
Lu
,
K.
,
Accorsi
,
M.
, and
Leonard
,
J.
,
2001
, “
Finite Element Analysis of Membrane Wrinkling
,”
Int. J. Numer. Methods Eng.
,
50
(
5
), pp.
1017
1038
.
9.
Mosler
,
J.
, and
Cirak
,
F.
,
2009
, “
A Variational Formulation for Finite Deformation Wrinkling Analysis of Inelastic Membranes
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
27–29
), pp.
2087
2098
.
10.
Roddeman
,
D. G.
,
Oomens
,
C. W. J.
,
Janssen
,
J. D.
, and
Drukker
,
J.
,
1987
, “
The Wrinkling of Thin Membranes: Part I. Theory
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
884
887
.
11.
Ziegler
,
R.
,
Wagner
,
W.
, and
Bletzinger
,
K. U.
,
2003
, “
A Finite-Element-Model for the Analysis of Wrinkled Membrane Structures
,”
Int. J. Space Struct.
,
18
(
1
), pp.
1
14
.
12.
Steigmann
,
D. J.
, and
Pipkin
,
A. C.
,
1989
, “
Axisymmetric Tension Fields
,”
J. Appl. Math. Phys. (ZAMP)
,
40
(
4
), pp.
526
542
.
13.
Steigmann
,
D. J.
,
1990
, “
Tension-Field Theory
,”
Proc. R. Soc. London, Ser. A
,
429
(
1876
), pp.
141
173
.
14.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
Singapore
.
15.
Ligarò
,
S. S.
, and
Barsotti
,
R.
,
2008
, “
Equilibrium Shapes of Inflated Inextensible Membranes
,”
Int. J. Solids Struct.
,
45
(
21
), pp.
5584
5598
.
16.
Reissner
,
E.
,
1938
, “
On Tension Field Theory
,” 5th International Congress on Applied Mechanics, Cambridge, MA, Sept., pp.
88
92
.
17.
Stein
,
M.
, and
Hedgepeth
,
J. M.
,
1961
, “
Analysis of Partly Wrinkled Membranes
,” NASA Langley Research Center, Langley Field, VA, Technical Note D-813.
18.
Pipkin
,
A. C.
,
1993
, “
The Relaxed Energy Density for Isotropic Elastic Membranes
,”
IMA J. Appl. Math.
,
50
(
3
), pp.
225
237
.
19.
Barsotti
,
R.
, and
Ligarò
,
S. S.
,
2014
, “
Static Response of Elastic Inflated Wrinkled Membranes
,”
Comput. Mech.
,
53
(
5
), pp.
1001
1013
.
20.
Contri
,
P.
, and
Schrefler
,
B. A.
,
1988
, “
A Geometrically Nonlinear Finite Element Analysis of Wrinkled Membrane Surfaces by a No-Compression Material Model
,”
Commun. Appl. Numer. Methods
,
4
(
1
), pp.
5
15
.
21.
Barsotti
,
R.
, and
Ligarò
,
S. S.
,
2012
, “
Inflation of Elastic Membranes in Contact With Rigid or Deformable Surfaces
,”
European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS)
, Vienna, Austria, Sept. 10–14.
22.
Kurita
,
Y.
,
Kempf
,
R.
,
Iida
,
Y.
,
Okude
,
J.
,
Kaneko
,
M.
,
Mishima
,
H. K.
,
Tsukamoto
,
H.
,
Sugimoto
,
E.
,
Katakura
,
S.
,
Kobayashi
,
K.
, and
Kiuchi
,
Y.
,
2008
, “
Contact-Based Stiffness Sensing of Human Eye
,”
IEEE Trans. Biomed. Eng.
,
55
(
2
), pp.
739
745
.
You do not currently have access to this content.