The use of combat helmets has greatly reduced penetrating injuries and saved lives of many soldiers. However, behind helmet blunt trauma (BHBT) has emerged as a serious injury type experienced by soldiers in battlefields. BHBT results from nonpenetrating ballistic impacts and is often associated with helmet back face deformation (BFD). In the current study, a finite element-based computational model is developed for simulating the ballistic performance of the Advanced Combat Helmet (ACH), which is validated against the experimental data obtained at the Army Research Laboratory. Both the maximum value and time history of the BFD are considered, unlike existing studies focusing on the maximum BFD only. The simulation results show that the maximum BFD, the time history of the BFD, and the shape and size of the effective area of the helmet shell agree fairly well with the experimental findings. In addition, it is found that ballistic impacts on the helmet at different locations and in different directions result in different BFD values. The largest BFD value is obtained for a frontal impact, which is followed by that for a crown impact and then by that for a lateral impact. Also, the BFD value is seen to decrease as the oblique impact angle decreases. Furthermore, helmets of four different sizes—extra large, large, medium, and small—are simulated and compared. It is shown that at the same bullet impact velocity the small-size helmet has the largest BFD, which is followed by the medium-size helmet, then by the large-size helmet, and finally by the extra large-size helmet. Moreover, ballistic impact simulations are performed for an ACH placed on a ballistic dummy head form embedded with clay as specified in the current ACH testing standard by using the validated helmet model. It is observed that the BFD values as recorded by the clay in the head form are in good agreement with the experimental data.

References

References
1.
Walsh
,
S. M.
,
Scott
,
B. R.
, and
Spagnuolo
,
D. M.
,
2005
, “
The Development of a Hybrid Thermoplastic Ballistic Material With Application to Helmets
,” U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, Report No. ARL-TR-3700.
2.
Kulkarni
,
S.
,
Gao
,
X.-L.
,
Horner
,
S.
,
Zheng
,
J. Q.
, and
David
,
N. V.
,
2013
, “
Ballistic Helmets—Their Design, Materials, and Performance Against Traumatic Brain Injury
,”
Compos. Struct.
,
101
, pp.
313
331
.
3.
Carroll
,
A. W.
, and
Soderstrom
,
C. A.
,
1978
, “
A New Nonpenetrating Ballistic Injury
,”
Ann. Surg.
,
188
(
6
), pp.
753
757
.
4.
Sarron
,
J.-C.
,
Caillou
,
J.-P.
,
Da Cunha
,
J.
,
Allain
,
J.-C.
, and
Tramecon
,
A.
,
2000
, “
Consequences of Nonpenetrating Projectile Impact on a Protected Head: Study of Rear Effects of Protections
,”
J. Trauma
,
49
(
5
), pp.
923
929
.
5.
Cannon
,
L.
,
2001
, “
Behind Armour Blunt Trauma—An Emerging Problem
,”
J. R. Army Med. Corps
,
147
(
1
), pp.
87
96
.
6.
Hisley
,
D. M.
,
Gurganus
,
J. C.
, and
Drysdale
,
A. W.
,
2011
, “
Experimental Methodology Using Digital Image Correlation to Assess Ballistic Helmet Blunt Trauma
,”
ASME J. Appl. Mech.
,
78
(
5
), p.
051022
.
7.
Prat
,
N.
,
Rongieras
,
F.
,
Sarron
,
J.-C.
,
Miras
,
A.
, and
Voiglio
,
E.
,
2012
, “
Contemporary Body Armor: Technical Data, Injuries, and Limits
,”
Eur. J. Trauma Emergency Surg.
,
38
(
2
), pp.
95
105
.
8.
Freitas
,
C. J.
,
Mathis
,
J. T.
,
Scott
,
N.
,
Bigger
,
R. P.
, and
MacKiewicz
,
J.
,
2014
, “
Dynamic Response due to Behind Helmet Blunt Trauma Measured With a Human Head Surrogate
,”
Int. J. Med. Sci.
,
11
(
5
), pp.
409
425
.
9.
Rafaels
,
K. A.
,
Cutcliffe
,
H. C.
,
Salzar
,
R. S.
,
Davis
,
M.
,
Boggess
,
B.
,
Bush
,
B.
,
Harris
,
R.
,
Rountree
,
M. S.
,
Sanderson
,
E.
,
Campman
,
S.
,
Koch
,
S.
, and
Dale Bass
,
C. R.
,
2015
, “
Injuries of the Head From Backface Deformation of Ballistic Protective Helmets Under Ballistic Impact
,”
J. Forensic Sci.
,
60
(
1
), pp.
219
225
.
10.
Young
,
L.
,
Rule
,
G. T.
,
Bocchieri
,
R. T.
,
Walilko
,
T. J.
,
Burns
,
J.
, and
Ling
,
G.
,
2015
, “
When Physics Meets Biology: Low and High Velocity Penetration, Blunt Trauma and Blast Injuries to the Brain
,”
Front. Neurol.
,
6
, p.
89
.
11.
Committee
,
2014
,
Review of Department of Defense Test Protocols for Combat Helmets, Committee on Review of Test Protocols Used by the DoD to Test Combat Helmets
,
The National Academies Press
,
Washington, DC
, pp.
25
38
.
12.
Vargas-Gonzalez
,
L.
,
Walsh
,
S. M.
, and
Wolbert
,
J.
,
2011
, “
Impact and Ballistic Response of Hybridized Thermoplastic Laminates
,” U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, Report No. ARL-MR-0769.
13.
Chocron
,
S.
,
King
,
N.
,
Bigger
,
R.
,
Walker
,
J.
,
Heisserer
,
U.
, and
van der Werff
,
H.
,
2013
, “
Impacts and Waves in Dyneema® HB80 Strips and Laminates
,”
ASME J. Appl. Mech.
,
80
(
3
), p.
031806
.
14.
Freitas
,
C. J.
,
Bigger
,
R. P.
,
Scott
,
N.
,
LaSala
,
V.
, and
MacKiewicz
,
J.
,
2014
, “
Composite Materials Dynamic Back Face Deflection Characteristics During Ballistic Impact
,”
J. Compos. Mater.
,
48
(
12
), pp.
1475
1486
.
15.
Khalil
,
T. B.
,
Goldsmith
,
W.
, and
Sackman
,
J.
,
1974
, “
Impact on a Model Head-Helmet System
,”
Int. J. Mech. Sci.
,
16
(
9
), pp.
609
625
.
16.
van Hoof
,
J.
,
1999
, “
Modelling of Impact Induced Delamination in Composite Materials
,” Ph.D. dissertation, Carleton University, Ottawa, Canada.
17.
van Hoof
,
J.
, and
Worswick
,
M.
,
2001
, “
Combining Head Models With Composite Models to Simulate Ballistic Impacts
,”
Defense R&D Canada
, Defence Research Establishment Valcartier, Val-Belair, QC, Canada, Contract Report No. DREV CR 2000-160.
18.
van Hoof
,
J.
,
Cronin
,
D.
,
Worswick
,
M.
,
Williams
,
K.
, and
Nandlall
,
D.
,
2001
, “
Numerical Head and Composite Helmet Models to Predict Blunt Trauma
,”
19th International Symposium on Ballistics
, Interlaken, Switzerland, May 7–11.
19.
Baumgartner
,
D.
, and
Willinger
,
R.
,
2005
, “
Finite Element Modelling of Human Head Injuries Caused by Ballistic Projectiles
,”
Rev. Eur. Élé.
,
14
(
4-5
), pp.
559
576
.
20.
Aare
,
M.
, and
Kleiven
,
S.
,
2007
, “
Evaluation of Head Response to Ballistic Helmet Impacts Using the Finite Element Method
,”
Int. J. Impact Eng.
,
34
(
3
), pp.
596
608
.
21.
Lee
,
H.
, and
Gong
,
S.
,
2010
, “
Finite Element Analysis for the Evaluation of Protective Functions of Helmets Against Ballistic Impact
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
537
550
.
22.
Tan
,
L. B.
,
Tse
,
K. M.
,
Lee
,
H. P.
,
Tan
,
V. B. C.
, and
Lim
,
S. P.
,
2012
, “
Performance of an Advanced Combat Helmet With Different Interior Cushioning Systems in Ballistic Impact: Experiments and Finite Element Simulations
,”
Int. J. Impact Eng.
,
50
(
1
), pp.
99
112
.
23.
Jazi
,
M. S.
,
Rezaei
,
A.
,
Karami
,
G.
,
Azarmi
,
F.
, and
Ziejewski
,
M.
,
2014
, “
A Computational Study of Influence of Helmet Padding Materials on the Human Brain Under Ballistic Impacts
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
12
), pp.
1368
1382
.
24.
Tse
,
K.
,
Tan
,
L.
,
Yang
,
B.
,
Tan
,
V.
,
Lim
,
S.
, and
Lee
,
H.
,
2014
, “
Ballistic Impacts of a Full-Metal Jacketed (FMJ) Bullet on a Validated Finite Element (FE) Model of Helmet-Cushion-Head
,”
5th International Conference on Computational Methods (ICCM2014)
, Cambridge, UK, July 28–30.
25.
U.S. Dept. of the Army
,
2010
, “
Operator's Manual for Advanced Combat Helmet (ACH)
,” U.S. Department of the Army, Washington, DC, Technical Manual No. TM 10-8470-204-10.
26.
LS-DYNA,
2015
, “
mat162: A Progressive Composite Damage Model for Unidirectional and Woven Fabric Composites
,” MAT162 User's Manual Version 15A-2015, available at: http://www.ccm.udel.edu/wp-content/uploads/2015/04/MAT162-USER-MANUAL-Version-15A-2015.pdf
27.
Jones
,
R. M.
,
1999
,
Mechanics of Composite Materials
,
2nd ed.
,
Taylor & Francis
,
New York
.
28.
Gao
,
X.-L.
,
2001
, “
Two Displacement Methods for In-Plane Deformations of Orthotropic Linear Elastic Materials
,”
Z. Angew. Math. Phys.
,
52
(
5
), pp.
810
822
.
29.
Xiao
,
J. R.
,
Gama
,
B. A.
, and
Gillespie
, Jr.,
J. W.
,
2007
, “
Progressive Damage and Delamination in Plain Weave S-2 Glass/SC-15 Composites Under Quasi-Static Punch-Shear Loading
,”
Compos. Struct.
,
78
(
2
), pp.
182
196
.
30.
Gama
,
B. A.
, and
Gillespie
, Jr.,
J. W.
,
2011
, “
Finite Element Modeling of Impact, Damage Evolution and Penetration of Thick-Section Composites
,”
Int. J. Impact Eng.
,
38
(
4
), pp.
181
197
.
31.
Carrillo
,
J.
,
Gamboa
,
R.
,
Flores-Johnson
,
E.
, and
Gonzalez-Chi
,
P.
,
2012
, “
Ballistic Performance of Thermoplastic Composite Laminates Made From Aramid Woven Fabric and Polypropylene Matrix
,”
Polym. Test.
,
31
(
4
), pp.
512
519
.
32.
Jordan
,
J. B.
,
Naito
,
C. J.
, and
Haque
,
B. Z. G.
,
2014
, “
Progressive Damage Modeling of Plain Weave E-Glass/Phenolic Composites
,”
Composites Part B
,
61
, pp.
315
323
.
33.
Wang
,
Y.
, and
Xia
,
Y.
,
1998
, “
The Effects of Strain Rate on the Mechanical Behaviour of Kevlar Fibre Bundles: An Experimental and Theoretical Study
,”
Composites Part A
,
29
(
11
), pp.
1411
1415
.
34.
Lim
,
J.
,
Zheng
,
J. Q.
,
Masters
,
K.
, and
Chen
,
W. W.
,
2011
, “
Effects of Gage Length, Loading Rates, and Damage on the Strength of PPTA Fibers
,”
Int. J. Impact Eng.
,
38
(
4
), pp.
219
227
.
35.
Bilisik
,
A. K.
, and
Turhan
,
Y.
,
2009
, “
Multidirectional Stitched Layered Aramid Woven Fabric Structures and Their Experimental Characterization of Ballistic Performance
,”
Text. Res. J.
,
79
(
14
), pp.
1331
1343
.
36.
Zhu
,
D.
,
Mobasher
,
B.
, and
Rajan
,
S. D.
,
2011
, “
Dynamic Tensile Testing of Kevlar 49 Fabrics
,”
J. Mater. Civ. Eng.
,
23
(
3
), pp.
230
239
.
37.
Zhang
,
L.
,
Makwana
,
R.
, and
Sharma
,
S.
,
2013
, “
Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet
,”
Front. Neurol.
,
4
, p.
88
.
38.
Gower
,
H.
,
Cronin
,
D.
, and
Plumtree
,
A.
,
2008
, “
Ballistic Impact Response of Laminated Composite Panels
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
1000
1008
.
39.
Zhu
,
G. Q.
,
Goldsmith
,
W.
, and
Dharan
,
C. K. H.
,
1992
, “
Penetration of Laminated Kevlar by Projectiles—I. Experimental Investigation
,”
Int. J. Solids Struct.
,
29
(
4
), pp.
399
420
.
40.
Moss
,
W. C.
, and
King
,
M. J.
,
2011
, “
Impact Response of U.S. Army and National Football League Helmet Pad Systems
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. LLNL-SR-464951.
41.
Fitek
,
J.
, and
Meyer
,
E.
,
2013
, “
Design of a Helmet Liner for Improved Low Velocity Impact Protection
,” U.S. Army Natick Soldier Research, Development and Engineering Center, Natick, MA, Technical Report No. Natick/TR-13/016.
42.
National Institute of Justice
,
1981
, NIJ Standard for Ballistic Helmets, U.S. Department of Justice, Washington, DC, Standard No. 0106.01.
43.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
, The Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
44.
Li
,
K.
,
Gao
,
X.-L.
, and
Sutherland
,
J.
,
2002
, “
Finite Element Simulation of the Orthogonal Metal Cutting Process for Qualitative Understanding of the Effects of Crater Wear on the Chip Formation Process
,”
J. Mater. Process. Technol.
,
127
(
3
), pp.
309
324
.
45.
Børvik
,
T.
,
Dey
,
S.
, and
Clausen
,
A.
,
2009
, “
Perforation Resistance of Five Different High-Strength Steel Plates Subjected to Small-Arms Projectiles
,”
Int. J. Impact Eng.
,
36
(
7
), pp.
948
964
.
46.
Steinberg
,
D.
,
Cochran
,
S.
, and
Guinan
,
M.
,
1980
, “
A Constitutive Model for Metals Applicable at High-Strain Rate
,”
J. Appl. Phys.
,
51
(
3
), pp.
1498
1504
.
47.
Steinberg
,
D.
,
1991
, “
Equation of State and Strength Properties of Selected Materials
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-MA-106439.
48.
Sturdivan
,
L. M.
,
Viano
,
D.
, and
Champion
,
H.
,
2004
, “
Analysis of Injury Criteria to Assess Chest and Abdominal Injury Risks in Blunt and Ballistic Impacts
,”
J. Trauma Inj. Infect. Crit. Care.
,
56
(
3
), pp.
651
663
.
49.
Committee
,
2001
,
Testing of Body Armor Materials: Phase III, Committee on Testing of Body Armor Materials for Use by the U.S. Army—Phase III, The National Academies Press
,
Washington, D.C.
, pp.
150
168
.
50.
Roberts
,
J. C.
,
Ward
,
E. E.
,
Merkle
,
A. C.
, and
O'Connor
,
J. V.
,
2007
, “
Assessing Behind Armor Blunt Trauma in Accordance With the National Institute of Justice Standard for Personal Body Armor Protection Using Finite Element Modeling
,”
J. Trauma Acute Care Surg.
,
62
(
5
), pp.
1127
1133
.
51.
Bae
,
G.
,
Xiong
,
Y.
,
Kumar
,
S.
,
Kang
,
K.
, and
Lee
,
C.
,
2008
, “
General Aspects of Interface Bonding in Kinetic Sprayed Coatings
,”
Acta Mater.
,
56
(
17
), pp.
4858
4868
.
52.
Hisley
,
D.
,
Gurganus
,
J.
,
Lee
,
J.
,
Williams
,
S.
, and
Drysdale
,
A.
,
2010
, “
Experimental Methodology Using Digital Image Correlation (DIC) to Assess Ballistic Helmet Blunt Trauma
,” Army Research Laboratory, Aberdeen Proving Ground, MD, Report No. ARL-TR-0000.
53.
Gao
,
X.-L.
, and
Mall
,
S.
,
2000
, “
A Two-Dimensional Rule-of-Mixtures Micromechanics Model for Woven Fabric Composites
,”
ASTM J. Compos. Technol. Res.
,
22
, pp.
60
70
.
54.
Cheeseman
,
B.
, and
Bogetti
,
T.
,
2003
, “
Ballistic Impact Into Fabric and Compliant Composite Laminates
,”
Compos. Struct.
,
61
(
1-2
), pp.
161
173
.
55.
Li
,
X. G.
,
Gao
,
X.-L.
, and
Kleiven
,
S.
,
2015
, “
Evaluation of Behind Helmet Blunt Trauma Induced by Ballistic Impact
,” (to be published).
You do not currently have access to this content.