The motion equations of a rolling flexible circular ring are derived using a Lagrangian formulation. The in-plane flexural and out-of-plane twist-bending free vibrations are modeled using the Rayleigh–Ritz method. The motion equations of a flexible circular ring translating and rotating in space are first developed and then constrained to roll on a flat surface by introducing Lagrange multipliers. The motion equations developed capture the nonholonomic nature of the circular ring rolling without slip on a flat surface. Numerical simulations are performed to validate the dynamic model developed and to investigate the effect of the flexibility of the circular ring on its trajectory. The vibrations of the circular ring are observed to impact the ring's motion.

References

1.
Chidamparam
,
P.
, and
Leissa
,
A. W.
,
1993
, “
Vibrations of Planar Curved Beams, Rings, and Arches
,”
ASME Appl. Mech. Rev.
,
46
(
9
), pp.
467
483
.
2.
Love
,
A. E. H.
,
1920
,
A Treatise on the Mathematical Theory of Elasticity
, 3rd ed.,
Dover Publications
,
New York
.
3.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
Hoboken, NJ
.
4.
Rao
,
S. S.
, and
Sundararajan
,
V.
,
1969
, “
In-Plane Flexural Vibrations of Circular Rings
,”
ASME J. App. Mech.
,
36
(
3
), pp.
620
625
.
5.
Kirkhope
,
J.
,
1976
, “
Simple Frequency Expression for the In-Plane Vibration of Thick Circular Rings
,”
J. Acoust. Soc. Am.
,
59
(
1
), pp.
86
89
.
6.
Rao
,
S. S.
,
1971
, “
Effects of Transverse Shear and Rotatory Inertia on the Coupled Twist-Bending Vibrations of Circular Rings
,”
J. Sound Vib.
,
16
(
4
), pp.
551
566
.
7.
Kirkhope
,
J.
,
1976
, “
Out-of-Plane Vibration of Thick Circular Ring
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
239
247
.
8.
Bickford
,
W. B.
, and
Maganty
,
S. P.
,
1986
, “
On the Out-of-Plane Vibrations of Thick Rings
,”
J. Sound Vib.
,
108
(
3
), pp.
503
507
.
9.
Nelson
,
F. C.
,
1962
, “
In-Plane Vibration of a Simply Supported Circular Ring Segment
,”
Int. J. Mech. Sci.
,
4
(
6
), pp.
517
527
.
10.
Wang
,
T. M.
,
1975
, “
Effect of Variable Curvature on Fundamental Frequency of Clamped Parabolic Arcs
,”
J. Sound Vib.
,
41
(
2
), pp.
247
251
.
11.
Charpie
,
J. P.
, and
Burroughs
,
C. B.
,
1993
, “
An Analytic Model for the Free In-Plane Vibration of Beams of Variable Curvature and Depth
,”
J. Acoust. Soc. Am.
,
92
(
2
), pp.
866
879
.
12.
McDaniel
,
T. J.
,
1971
, “
Dynamics of Circular Periodic Structures
,”
J. Aircr.
,
8
(
3
), pp.
143
149
.
13.
Sahay
,
K. B.
, and
Sundararajan
,
V.
,
1972
, “
Vibration of a Stiffened Ring Considered as a Cyclic Structure
,”
J. Sound Vib.
,
22
(
4
), pp.
467
473
.
14.
Huang
,
S. C.
, and
Soedel
,
W.
,
1987
, “
Effects of Coriolis Acceleration on the Free and Forced In-Plane Vibrations of Rotating Rings on Elastic Foundation
,”
J. Sound Vib.
,
115
(
2
), pp.
253
274
.
15.
Filipich
,
C. P.
, and
Rosales
,
M. B.
,
1990
, “
In-Plane Vibration of Symmetrically Supported Circumferential Rings
,”
J. Sound Vib.
,
136
(
2
), pp.
305
314
.
16.
Wu
,
J.-S.
, and
Chen
,
Y.-C.
,
2011
, “
Out-of-Plane Free Vibration Analysis of a Horizontally Circular Curved Beam Carrying Arbitrary Sets of Concentrated Elements
,”
J. Struct. Eng.
,
137
(
2
), pp.
220
241
.
17.
Zakrzhevskii
,
A. E.
, and
Khoroshilovn
,
V. S.
,
2011
, “
Natural Frequencies and Modes of Unit-Length Vibrations of a Fixed Ring
,”
Int. Appl. Mech.
,
47
(
6
), pp.
745
753
.
18.
Zakrzhevskii
,
A. E.
,
Tkachenko
,
V. F.
, and
Khoroshilovn
,
V. S.
,
2011
, “
Natural Modes and Frequencies of In-Plane Vibrations of a Fixed Elastic Ring
,”
Int. Appl. Mech.
,
46
(
12
), pp.
1420
1427
.
19.
Kim
,
S. J.
, and
Savkoor
,
A. R.
,
1997
, “
The Contact Problem of In-Plane Rolling Tires on a Flat Road
,”
Veh. Syst. Dyn. Suppl.
,
27
(
S1
), pp.
189
206
.
20.
Kim
,
S.
,
Nikravesh
,
P. E.
, and
Gim
,
G.
,
2008
, “
A Two-Dimensional Tire Model on Uneven Roads for Vehicle Dynamic Simulation
,”
Veh. Syst. Dyn. Suppl.
,
46
(
10
), pp.
913
930
.
21.
Kang
,
N.
,
2009
, “
Prediction of Tire Natural Frequency With Consideration of the Enveloping Property
,”
Int. J. Automot. Technol.
,
10
(
1
), pp.
65
71
.
22.
Calabrese
,
F.
,
Farroni
,
F.
, and
Timpone
,
F.
,
2013
, “
A Flexible Ring Tyre Model for Normal Interaction
,”
Int. Rev. Modell. Simul.
,
6
(
4
), pp.
1301
1306
.
23.
Angeles
,
J.
, and
Sasha
,
S. K.
,
1991
, “
Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
238
243
.
24.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.
25.
Hughes
,
P. C.
,
2004
,
Spacecraft Attitude Dynamics
, 2nd ed.,
Dover
,
Mineola, NY
.
26.
Wu
,
J.-S.
, and
Chen
,
Y.-C.
,
2010
, “
Out-of-Plane Free Vibration Analysis of a Horizontally Circular Curved Beam Carrying Arbitrary Sets of Concentrated Elements
,”
J. Struct. Eng.
,
137
(
2
), pp.
220
241
.
27.
Winfrey
,
R. C.
,
1972
, “
Dynamic Analysis of Elastic Link Mechanisms by Reduction of Coordinates
,”
J. Eng. Ind.
,
94
(
2
), pp.
577
581
.
28.
Turcic
,
D. A.
, and
Midha
,
A.
,
1984
, “
Dynamic Analysis of Elastic Mechanism Systems. Part I: Applications
,”
J. Dyn. Syst., Meas., Control
,
106
(
4
), pp.
249
254
.
29.
Asada
,
H.
,
Ma
,
Z. D.
, and
Tokumaru
,
H.
,
1990
, “
Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control
,”
J. Dyn. Syst., Meas., Control
,
112
(
2
), pp.
177
185
.
30.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
31.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2009
,
Analytical Mechanics of Space Systems
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
32.
Liu
,
M.
, and
Gorman
,
D. G.
,
1995
, “
Formulation of Rayleigh Damping and Its Extension
,”
Comput. Struct.
,
57
(
2
), pp.
277
285
.
33.
Rao
,
A. V.
,
2006
,
Dynamics of Particles and Rigid Bodies
,
Cambridge University Press
,
Cambridge, UK
, pp.
106
110
.
34.
Forbes
,
J. R.
,
Barfoot
,
T. D.
, and
Damaren
,
C. J.
,
2010
, “
Dynamic Modeling and Stability Analysis of a Power-Generating Tumbleweed Rover
,”
Multibody Syst. Dyn.
,
24
(
4
), pp.
413
439
.
35.
Leissa
,
A. W.
, and
Qatu
,
M. S.
,
2011
,
Vibrations of Continuous Systems
,
McGraw-Hill Education
,
New York
.
36.
Forbes
,
J. R.
,
2014
, “
Identities for Deriving Equations of Motion Using Constrained Attitude Parameterizations
,”
J. Guid., Control, Dyn.
,
37
(
4
), pp.
1283
1289
.
37.
de Ruiter
,
A. H. J.
, and
Forbes
,
J. R.
,
2014
, “
General Identities for Parameterizations of SO(3) With Applications
,”
ASME J. Appl. Mech.
,
81
(
7
), p.
071007
.
You do not currently have access to this content.