Temperature- and stiffness-dependent edge forces offer new mechanisms of designing nanodevices driven by temperature and stiffness gradients. Here, we investigate the edge forces in a graphene nanolayer on a spring supported graphene substrate based on molecular dynamics (MD) simulations. The dependences of the edge forces on the temperature and stiffness of the substrate are discussed in detail. Special attention is paid to the effect of the out-of-plane deformation of the substrate on the constituent edge forces and the resultant edge force. The results show that the deformation may lead to a significant redistribution of the constituent edge forces but does not change the resultant edge force, suggesting that particular caution should be exercised in designing nanodevices based on sliding graphene layers to avoid potential edge damage.

References

1.
van den Heuvel
,
M. G. L.
, and
Dekker
,
C.
,
2007
, “
Motor Proteins at Work for Nanotechnology
,”
Science
,
317
(
5836
), pp.
333
336
.
2.
Wang
,
J.
,
2009
, “
Can Man-Made Nanomachines Compete With Nature Biomotors?
,”
ACS Nano
,
3
(
1
), pp.
4
9
.
3.
Wang
,
J.
, and
Gao
,
W.
,
2012
, “
Nano/Microscale Motors: Biomedical Opportunities and Challenges
,”
ACS Nano
,
6
(
7
), pp.
5745
5751
.
4.
von Delius
,
M.
,
Geertsema
,
E. M.
, and
Leigh
,
D. A.
,
2010
, “
A Synthetic Small Molecule that Can Walk Down a Track
,”
Nat. Chem.
,
2
(
2
), pp.
96
101
.
5.
Barreiro
,
A.
,
Rurali
,
R.
,
Hernandez
,
E. R.
,
Moser
,
J.
,
Pichler
,
T.
,
Forro
,
L.
, and
Bachtold
,
A.
,
2008
, “
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
,”
Science
,
320
(
5877
), pp.
775
778
.
6.
Chen
,
L.
,
Nakamura
,
M.
,
Schindler
,
T. D.
,
Parker
,
D.
, and
Bryant
,
Z.
,
2012
, “
Engineering Controllable Bidirectional Molecular Motors Based on Myosin
,”
Nat. Nano
,
7
(
4
), pp.
252
256
.
7.
Dundas
,
D.
,
McEniry
,
E. J.
, and
Todorov
,
T. N.
,
2009
, “
Current-Driven Atomic Waterwheels
,”
Nat. Nano
,
4
(
2
), pp.
99
102
.
8.
Kudernac
,
T.
,
Ruangsupapichat
,
N.
,
Parschau
,
M.
,
Macia
,
B.
,
Katsonis
,
N.
,
Harutyunyan
,
S. R.
,
Ernst
,
K.-H.
, and
Feringa
,
B. L.
,
2011
, “
Electrically Driven Directional Motion of a Four-Wheeled Molecule on a Metal Surface
,”
Nature
,
479
(
7372
), pp.
208
211
.
9.
Wickham
,
S. F. J.
,
Endo
,
M.
,
Katsuda
,
Y.
,
Hidaka
,
K.
,
Bath
,
J.
,
Sugiyama
,
H.
, and
Turberfield
,
A. J.
,
2011
, “
Direct Observation of Stepwise Movement of a Synthetic Molecular Transporter
,”
Nat. Nano
,
6
(
3
), pp.
166
169
.
10.
Hernández
,
S. C.
,
Bennett
,
C. J. C.
,
Junkermeier
,
C. E.
,
Tsoi
,
S. D.
,
Bezares
,
F. J.
,
Stine
,
R.
,
Robinson
,
J. T.
,
Lock
,
E. H.
,
Boris
,
D. R.
,
Pate
,
B. D.
,
Caldwell
,
J. D.
,
Reinecke
,
T. L.
,
Sheehan
,
P. E.
, and
Walton
,
S. G.
,
2013
, “
Chemical Gradients on Graphene to Drive Droplet Motion
,”
ACS Nano
,
7
(
6
), pp.
4746
4755
.
11.
Luo
,
M.
,
Zhang
,
Z.
, and
Yakobson
,
B. I.
,
2013
, “
Tunable Gigahertz Oscillators of Gliding Incommensurate Bilayer Graphene Sheets
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040906
.
12.
Fang
,
H.
, and
Xu
,
J.
,
2013
, “
Stick-Slip Effect in a Vibration-Driven System With Dry Friction: Sliding Bifurcations and Optimization
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051001
.
13.
Barnard
,
A. S.
,
2015
, “
Materials Science: Nanoscale Locomotion Without Fuel
,”
Nature
,
519
(
7541
), pp.
37
38
.
14.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2011
, “
Thermal-Induced Edge Barriers and Forces in Interlayer Interactions of Concentric Carbon Nanotubes
,”
Phys. Rev. Lett.
,
107
(
10
), p.
105502
.
15.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2012
, “
Mechanics of Thermophoretic and Thermally Induced Edge Forces in Carbon Nanotube Nanodevices
,”
J. Mech. Phys. Solids
,
60
(
9
), pp.
1676
1687
.
16.
Chang
,
T.
,
Zhang
,
H.
,
Guo
,
Z.
,
Guo
,
X.
, and
Gao
,
H.
,
2015
, “
Nanoscale Directional Motion Towards Regions of Stiffness
,”
Phys. Rev. Lett.
,
114
(
1
), p.
015504
.
17.
Schoen
,
P. A. E.
,
Walther
,
J. H.
,
Arcidiacono
,
S.
,
Poulikakos
,
D.
, and
Koumoutsakos
,
P.
,
2006
, “
Nanoparticle Traffic on Helical Tracks: Thermophoretic Mass Transport Through Carbon Nanotubes
,”
Nano Lett.
,
6
(
9
), pp.
1910
1917
.
18.
Somada
,
H.
,
Hirahara
,
K.
,
Akita
,
S.
, and
Nakayama
,
Y.
,
2009
, “
A Molecular Linear Motor Consisting of Carbon Nanotubes
,”
Nano Lett.
,
9
(
1
), pp.
62
65
.
19.
Zambrano
,
H. A.
,
Walther
,
J. H.
, and
Jaffe
,
R. L.
,
2009
, “
Thermally Driven Molecular Linear Motors: A Molecular Dynamics Study
,”
J. Chem. Phys.
,
131
(
24
), p.
241104
.
20.
Lervik
,
A.
, and
Bresme
,
F.
,
2014
, “
Sorting Particles With Nanoscale Thermophoretic Devices: How Efficient is It?
,”
Phys. Chem. Chem. Phys.
,
16
(
26
), pp.
13279
13286
.
21.
Zhang
,
H.
,
Guo
,
Z.
,
Gao
,
H.
, and
Chang
,
T.
,
2015
, “
Stiffness-Dependent Interlayer Friction of Graphene
,”
Carbon
,
94
, pp.
60
66
.
22.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
23.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
(
4
), pp.
783
802
.
24.
Girifalco
,
L. A.
,
Hodak
,
M.
, and
Lee
,
R. S.
,
2000
, “
Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential
,”
Phys. Rev. B
,
62
(
19
), pp.
104
110
.
You do not currently have access to this content.