In this paper, an inertia-based stabilizing method is proposed to overcome the loss of numerical convergence in quasi-static simulations of fracture problems with unstable (fast or dynamic) crack propagation. The method guarantees unconditional convergence as the time increment step progressively decreases and it does not need any numerical damping or other solution enhancement parameters. It has been demonstrated, through direct simulations of several numerical examples with severe local or global instabilities, that the proposed method can effectively and efficiently overcome severe instability points unconditionally and regain stability if there exist mechanisms for stable crack propagation after passing through such instability points. In all the numerical tests, the new method outperforms other solution enhancement techniques, such as numerical damping, arc-length method, and implicit dynamic simulation method, in the solution accuracy and numerical robustness.

References

1.
Spearing
,
S. M.
, and
Beaumont
,
P. W. R.
,
1992
, “
Fatigue Amage Mechanics of Composite Materials. I: Experimental Measurement of Damage and Post-Fatigue Properties
,”
Compos. Sci. Technol.
,
44
(
2
), pp.
159
168
.
2.
Yang
,
Q. D.
, and
Cox
,
B. N.
,
2005
, “
Cohesive Models for Damage Evolution in Laminated Composites
,”
Int. J. Fract.
,
133
(
2
), pp.
107
137
.
3.
Hallett
,
S. R.
, and
Wisnom
,
M. R.
,
2006
, “
Experimental Investigation of Progressive Damage and the Effect of Layup in Notched Tensile Tests
,”
J. Compos. Mater.
,
40
(
2
), pp.
119
141
.
4.
Yang
,
Q. D.
,
Rugg
,
K.
,
Cox
,
B. N.
, and
Shaw
,
M. C.
,
2003
, “
Failure in the Junction Region of T-Stiffeners: 3D-Braided vs. 2D Tape Laminate Stiffeners
,”
Int. J. Solids Struct.
,
40
(
7
), pp.
1653
1668
.
5.
Xie
,
J.
, and
Waas
,
A.
,
2015
, “
Predictions of Delamination Growth for Quasi-Static Loading of Composite Laminates
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081004
.
6.
Cox
,
B. N.
, and
Yang
,
Q. D.
,
2006
, “
In Quest of Virtual Tests for Structural Composites
,”
Science
,
314
(
5802
), pp.
1102
1107
.
7.
Llorca
,
J.
,
González
,
C.
,
Molina-Aldareguía
,
J. M.
,
Segurado
,
J.
,
Seltzer
,
R.
,
Sket
,
F.
,
Rodríguez
,
M.
,
Sádaba
,
S.
,
Muñoz
,
R.
, and
Canal
,
L. P.
,
2011
, “
Multiscale Modeling of Composite Materials: A Roadmap Towards Virtual Testing
,”
Adv. Mater.
,
23
(
44
), pp.
5130
5147
.
8.
Yang
,
Q. D.
,
Cox
,
B. N.
,
Fang
,
X. J.
, and
Zhou
,
Z. Q.
,
2011
, “
Virtual Testing for Advanced Aerospace Composites: Advances and Future Needs
,”
ASME J. Eng. Mater. Technol.
,
133
(
1
), p.
011002
.
9.
Jia
,
Y. J.
, and
Liu
,
B.
,
2015
, “
Crack Branching Characteristics at Different Propagation Speeds: From Quasi-Static to Supersonic Regime
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
124501
.
10.
Needleman
,
A.
,
2015
, “
The Effect of Rate Dependence on Localization of Deformation and Failure in Softening Solids
,”
ASME J. Appl. Mech.
,
82
(
2
), p.
021002
.
11.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
12.
Moës
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
(
7
), pp.
813
833
.
13.
Belytschko
,
T.
,
Gracia
,
R.
, and
Ventura
,
G.
,
2009
, “
A Review of Extended/Generalized Finite Element Methods for Material Modeling
,”
Modelling Simul. Mater. Sci. Eng.
,
17
, p.
043001
.
14.
Huynh
,
D. B. P.
, and
Belytschko
,
T.
,
2009
, “
The Extended Finite Element Method for Fracture in Composite Materials
,”
Int. J. Numer. Methods Eng.
,
77
(
2
), pp.
214
239
.
15.
Hettich
,
T.
,
Hund
,
A.
, and
Ramm
,
E.
,
2008
, “
Modeling of Failure in Composites by X-FEM and Level Sets Within a Multiscale Framework
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
5
), pp.
414
424
.
16.
van de Meer
,
F. P.
, and
Sluys
,
L. J.
,
2009
, “
A Phantom Node Formulation With Mixed Mode Cohesive Law for Splitting in Laminates
,”
Int. J. Fract.
,
158
(
2
), pp.
107
124
.
17.
van de Meer
,
F. P.
,
Oliver
,
C.
, and
Sluys
,
L. J.
,
2010
, “
Computational Analysis of Progressive Failure in a Notched Laminate Including Shear Nonlinearity and Fiber Failure
,”
Compos. Sci. Technol.
,
70
(
4
), pp.
692
700
.
18.
De Carvalho
,
N. V.
,
Chen
,
B. Y.
,
Pinho
,
S. T.
,
Ratcliffe
,
J. G.
,
Baiz
,
P. M.
, and
Tay
,
T. E.
,
2015
, “
Modeling Delamination Migration in Cross-Ply Tape Laminates
,”
Composites, Part A
,
71
, pp.
192
203
.
19.
Chen
,
B. Y.
,
Pinho
,
S. T.
,
De Carvalho
,
N. V.
,
Baiz
,
P. M.
, and
Tay
,
T. E.
,
2014
, “
A Floating Node Method for the Modelling of Discontinuities in Composites
,”
Eng. Fract. Mech.
,
127
, pp.
104
134
.
20.
Iarve
,
E. V.
,
Mollenhauer
,
D.
, and
Kim
,
R.
,
2005
, “
Theoretical and Experimental Investigation of Stress Redistribution in Open-Hole Composite Laminates Due to Damage Accumulation
,”
Composites, Part A
,
36
(
2
), pp.
163
171
.
21.
Iarve
,
E. V.
,
Gurvich
,
M. R.
,
Mollenhauer
,
D.
,
Rose
,
C. A.
, and
Davila
,
C. G.
,
2011
, “
Mesh Independent Matrix Cracking and Delamination Modelling in Laminated Composites
,”
Int. J. Numer. Methods Eng.
,
88
(
8
), pp.
749
773
.
22.
Iarve
,
E. V.
,
Hoos
,
K. H.
, and
Mollenhauer
,
D.
,
2014
, “
Damage Initiation and Propagation Modeling in Laminated Composites Under Fatigue Loading
,”
American Society for Composites 29th Technical Conference
, La Jolla, CA, Sept. 8–10, pp.
3440
3456
.
23.
Ling
,
D. S.
,
Yang
,
Q. D.
, and
Cox
,
B. N.
,
2009
, “
An Augmented Finite Element Method for Modeling Arbitrary Discontinuities in Composite Materials
,”
Int. J. Fract.
,
156
(
1
), pp.
53
73
.
24.
Fang
,
X. J.
,
Yang
,
Q. D.
,
Cox
,
B. N.
, and
Zhou
,
Z. Q.
,
2011
, “
An Augmented Cohesive Zone Element for Arbitrary Crack Coalescence and Bifurcation in Heterogeneous Materials
,”
Int. J. Numer. Methods Eng.
,
88
(
9
), pp.
841
861
.
25.
Fang
,
X. J.
,
Zhou
,
Z. Q.
,
Cox
,
B. N.
, and
Yang
,
Q. D.
,
2011
, “
High-Fidelity Simulations of Multiple Fracture Processes in a Laminated Composites in Tension
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1355
1373
.
26.
Qiao
,
H.
,
Chen
,
W. Q.
,
Yang
,
Q. D.
, and
Lua
,
J.
,
2011
, “
Augmented Cohesive Elements for Efficient Delamination Analysis of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
,
133
(
4
), p.
041010
.
27.
Liu
,
W.
,
Yang
,
Q. D.
,
Mohammadizadeh
,
S.
,
Su
,
X. Y.
, and
Ling
,
D. S.
,
2013
, “
An Accurate and Efficient Augmented Finite Element Method for Arbitrary Crack Interactions
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041033
.
28.
Liu
,
W.
,
Yang
,
Q. D.
,
Mohammadizadeh
,
S.
, and
Su
,
X. Y.
,
2014
, “
An Efficient Augmented Finite Element Method (A-FEM) for Arbitrary Cracking and Crack Interaction in Solids
,”
Int. J. Numer. Methods Eng.
,
99
(
6
), pp.
438
468
.
29.
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Turon
,
A.
,
2008
, “
Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements
,”
J. Aircr.
,
45
(
2
), pp.
663
672
.
30.
Ladevèze
,
P.
,
Allix
,
O.
,
Duo
,
J. F.
, and
Leveque
,
D.
,
2000
, “
A Mesomodel for Localisation and Damage Computation in Laminates
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
1–2
), pp.
105
122
.
31.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1978
, “
Collocation, Dissipation and ‘Overshoot’ for Time Integration Schemes in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
6
(
1
), pp.
99
117
.
32.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.
33.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.
34.
Crisfield
,
M. A.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure That Handles ‘Snap-Through’
,”
Comput. Struct.
,
13
(
1–3
), pp.
55
62
.
35.
de Borst
,
R.
,
1999
, “
Computation of Post-Bifurcation and Post-Failure Behaviour of Strain-Softening Solids
,”
Comput. Struct.
,
25
(
2
), pp.
211
224
.
36.
Geers
,
M. G. D.
,
1999
, “
Enhanced Solution Control for Physically and Geometrically Nonlinear Problems. Part I—The Subplane Control Approach
,”
Int. J. Numer. Methods Eng.
,
46
(
2
), pp.
177
204
.
37.
May
,
I. M.
, and
Duan
,
Y.
,
1997
, “
A Local Arc-Length Procedure for Strain Softening
,”
Comput. Struct.
,
64
(
1–4
), pp.
297
303
.
38.
Liu
,
W.
,
Schesser
,
D.
,
Yang
,
Q. D.
, and
Ling
,
D. S.
,
2015
, “
A Consistency-Check Based Algorithm for Element Condensation in Augmented Finite Element Methods for Fracture Analysis
,”
Eng. Fract. Mech.
,
139
, pp.
78
97
.
39.
ABAQUS
,
2011
, “
ABAQUS Version 6.11 Theory Manual
,” ABAQUS Inc., Pawtucket, RI.
40.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
41.
Turon
,
A.
,
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
.
42.
Hallett
,
S. R.
, and
Wisnom
,
M. R.
,
2006
, “
Numerical Investigation of Progressive Damage and the Effect of Layup in Notched Tensile Tests
,”
J. Compos. Mater.
,
40
(
14
), pp.
1229
1245
.
43.
Yang
,
Q. D.
,
Fang
,
X. J.
,
Shi
,
J.
, and
Lua
,
J.
,
2010
, “
An Improved Cohesive Element for Shell Delamination Analyses
,”
Int. J. Numer. Methods Eng.
,
83
(
5
), pp.
611
641
.
44.
Zhou
,
Z. Q.
,
Fang
,
X. J.
,
Cox
,
B. N.
, and
Yang
,
Q. D.
,
2010
, “
The Evolution of a Transverse Intra-Ply Crack Coupled to Delamination Cracks
,”
Int. J. Fract.
,
165
(
1
), pp.
77
92
.
45.
Verhoosel
,
C. V.
,
Remmers
,
J. J. C.
, and
Gutierrez
,
M. A.
,
2008
, “
A Dissipation-Based Arc-Length Method for Robust Simulation of Brittle and Ductile Failure
,”
Int. J. Numer. Methods Eng.
,
77
(
9
), pp.
1290
1321
.
46.
Hughes
,
T. J. R.
, and
Liu
,
W. K.
,
1978
, “
Implicit–Explicit Finite Elements in Transient Analysis: Stability Theory
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
371
374
.
47.
Jung
,
J.
, and
Yang
,
Q. D.
, “
An Augmented Finite Element for Dynamic Crack Growth in Elastic Solids
,”
Int. J. Fract.
(submitted).
You do not currently have access to this content.