The rate at which fluid drains from a collapsing channel or crack depends on the interaction between the elastic properties of the solid and the fluid flow. The same interaction controls the rate at which a pressurized fluid can flow into a crack. In this paper, we present an analysis for the interaction between the viscous flow and the elastic field associated with an expanding or collapsing fluid-filled channel. We first examine an axisymmetric problem for which a completely analytical solution can be developed. A thick-walled elastic cylinder is opened by external surface tractions, and its core is filled by a fluid. When the applied tractions are relaxed, a hydrostatic pressure gradient drives the fluid to the mouth of the cylinder. The relationship between the change in dimensions, time, and position along the cylinder is given by the diffusion equation, with the diffusion coefficient being dependent on the modulus of the substrate, the viscosity of the fluid, and the ratio of the core radius to the exterior radius of the cylinder. The second part of the paper examines the collapse of elliptical channels with arbitrary aspect ratios, so as to model the behavior of fluid-filled cracks. The channels are opened by a uniaxial tension parallel to their minor axes, filled with a fluid, and then allowed to collapse. The form of the analysis follows that of the axisymmetric calculations, but is complicated by the fact that the aspect ratio of the ellipse changes in response to the local pressure. Approximate analytical solutions in the form of the diffusion equation can be found for small aspect ratios. Numerical solutions are given for more extreme aspect ratios, such as those appropriate for cracks. Of particular note is that, for a given cross-sectional area, the rate of collapse is slower for larger aspect ratios. With minor modifications to the initial conditions and the boundary conditions, the analysis is also valid for cracks being opened by a pressurized fluid.

References

1.
Mills
,
K. L.
,
Huh
,
D.
,
Takayama
,
S.
, and
Thouless
,
M. D.
,
2010
, “
Instantaneous Fabrication of Arrays of Normally Closed, Adjustable, and Reversible Nanochannels by Tunnel Cracking
,”
Lab Chip
,
10
(
12
), pp.
1627
1630
.
2.
Huh
,
D.
,
Mills
,
K. L.
,
Thouless
,
M. D.
, and
Takayama
,
S.
,
2007
, “
Tunable Elastomeric Nanochannels for Nanofluidic Manipulation
,”
Nat. Mater.
,
6
(
6
), pp.
424
428
.
3.
Douville
,
N.
,
Li
,
Z.
,
Takayama
,
S.
, and
Thouless
,
M. D.
,
2011
, “
Crack Channelling in a Metal-Coated Elastomer
,”
Soft Matter
,
7
(
14
), pp.
6493
6500
.
4.
Matsuoka
,
T.
,
Kim
,
B. C.
,
Huang
,
J.
,
Douville
,
N. J.
,
Thouless
,
M. D.
, and
Takayama
,
S.
,
2012
, “
Nanoscale Squeezing in Elastomeric Nanochannels for Single Chromatin Linearization
,”
Nano Lett.
,
12
(
12
), pp.
6480
6484
.
5.
Zhu
,
X.
,
Mills
,
K. L.
,
Peters
,
P. R.
,
Bahng
,
J. H.
,
Liu
,
E. H.
,
Shim
,
J.
,
Naruse
,
K.
,
Csete
,
M. E.
,
Thouless
,
M. D.
, and
Takayama
,
S.
,
2005
, “
Fabrication of Reconfigurable Protein Matrices by Cracking
,”
Nat. Mater.
,
4
(
5
), pp.
403
406
.
6.
Dixon
,
A. R.
,
Moraes
,
C.
,
Csete
,
M. E.
,
Thouless
,
M. D.
,
Philbert
,
M. A.
, and
Takayama
,
S.
,
2014
, “
One-Dimensional Patterning of Cells in Silicone Wells Via Compression-Induced Fracture
,”
J. Biomed. Mater. Res., Part A
,
102
(
5
), pp.
1361
1369
.
7.
Moraes
,
C.
,
Kim
,
B. C.
,
Zhu
,
X.
,
Mills
,
K. L.
,
Dixon
,
A. R.
,
Thouless
,
M. D.
, and
Takayama
,
S.
,
2014
, “
Defined Topologically-Complex Protein Matrices to Manipulate Cell Shape Via Three-Dimensional Fiber-Like Patterns
,”
Lab Chip
,
14
(
13
), pp.
2191
2201
.
8.
Huh
,
D.
,
Kim
,
H. J.
,
Fraser
,
J. P.
,
Shea
,
D. E.
,
Khan
,
M.
,
Bahinski
,
A.
,
Hamilton
,
G. A.
, and
Ingber
,
D. E.
,
2013
, “
Microfabrication of Human Organs-on-Chips
,”
Nat. Protoc.
,
8
(
11
), pp.
2135
2157
.
9.
Huang
,
J.
,
Kim
,
B. C.
,
Takayama
,
S.
, and
Thouless
,
M. D.
,
2014
, “
The Control of Crack Arrays in Thin Films
,”
J. Mater. Sci.
,
49
(
1
), pp.
255
268
.
10.
Kim
,
B. C.
,
Matsuoka
,
T.
,
Morales
,
C.
,
Huang
,
J.
,
Thouless
,
M. D.
, and
Takayama
,
S.
,
2013
, “
Guided Fracture of Films on Soft Substrates to Create Micro/Nano-Feature Arrays With Controlled Periodicity
,”
Sci. Rep.
,
3
, p.
3027
.
11.
Cheng
,
M. C.
,
Leske
,
A. T.
,
Matsuoka
,
T.
,
Kim
,
B. C.
,
Lee
,
J. S.
,
Burns
,
M. A.
,
Takayama
,
S.
, and
Biteen
,
J. S.
,
2013
, “
Super-Resolution Imaging of PDMS Nanochannels by Single-Molecule Micelle-Assisted Blink Microscopy
,”
J. Phys. Chem. B
,
117
(
16
), pp.
4406
4411
.
12.
Li
,
M.
, and
Brasseur
,
J. G.
,
1993
, “
Non-Steady Peristaltic Transport in Finite-Length Tubes
,”
J. Fluid Mech.
,
248
, pp.
129
151
.
13.
Eytan
,
O.
, and
Elad
,
D.
,
1999
, “
Analysis of Intra-Uterine Fluid Motion Induced by Uterine Contractions
,”
Bull. Math. Biol.
,
61
(
2
), pp.
221
238
.
14.
Selverov
,
K. P.
, and
Stone
,
H. A.
,
2001
, “
Peristaltically Driven Channel Flows With Applications Toward Micromixing
,”
Phys. Fluids
,
13
(
7
), pp.
1837
1859
.
15.
Yi
,
M.
,
Bau
,
H. H.
, and
Hu
,
H.
,
2002
, “
Peristaltically Induced Motion in a Closed Cavity With Two Vibrating Walls
,”
Phys. Fluids
,
14
(
1
), pp.
184
197
.
16.
Jeon
,
N.
,
Chiu
,
D. T.
,
Wargo
,
C. J.
,
Wui
,
H.
,
Choi
,
I. S.
,
Anderson
,
J. R.
, and
Whitesides
,
G. M.
,
2002
, “
Microfluidics Section: Design and Fabrication of Integrated Passive Valves and Pumps for Flexible Polymer 3-Dimensional Microfluidic Systems
,”
Biomed. Microdevices
,
4
(
2
), pp.
117
121
.
17.
Eddings
,
M. A.
, and
Gale
,
B. K.
,
2006
, “
A PDMS-Based Gas Permeation Pump for On-Chip Fluid Handling in Microfluidic Devices
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2396
2402
.
18.
Khoo
,
M.
, and
Chang
,
L.
,
2000
, “
A Novel Micromachined Magnetic Membrane Microfluid Pump
,”
22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEMBS
), Chicago, July 23–28, Vol.
3
, pp.
2394
2397
.
19.
Unger
,
M. A.
,
Chou
,
H. P.
,
Thorsen
,
T.
,
Scherer
,
A.
, and
Quake
,
S. R.
,
2000
, “
Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography
,”
Science
,
288
(
5463
), pp.
113
116
.
20.
Luo
,
X. Y.
, and
Pedley
,
T. J.
,
1995
, “
A Numerical Simulation of Steady Flow in a 2-D Collapsible Channel
,”
J. Fluids Struct.
,
9
(
2
), pp.
149
174
.
21.
Marzo
,
A.
,
Luo
,
X. Y.
, and
Bertram
,
C. D.
,
2005
, “
Three-Dimensional Collapse and Steady Flow in Thick-Walled Flexible Tubes
,”
J. Fluids Struct.
,
20
(
6
), pp.
817
835
.
22.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
,
Oxford, UK
.
23.
Inglis
,
C. E.
,
1913
, “
Stresses in a Plate Due to the Presence of Cracks and Sharp Corners
,”
Proc. Inst. Nav. Archit.
,
55
, pp.
219
230
.
24.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2007
,
Table of Integrals, Series, and Products
,
Academic Press
,
Burlington, MA
.
25.
Lekner
,
J.
,
2007
, “
Viscous Flow Through Pipes of Various Cross-Sections
,”
Eur. J. Phys.
,
28
(
3
), pp.
521
527
.
You do not currently have access to this content.