The responses of linear and nonlinear oscillators to fractional Gaussian noise (fGn) are studied. First, some preliminary concepts and properties of fractional Brownian motion (fBm) and fGn with Hurst index 1/2<H<1 are introduced. Then, the exact sample solution, correlation function, spectral density, and mean-square value of the response of linear oscillator to fGn are obtained. Based on the sample solution, it is proved that the long-range correlation index of displacement response of linear oscillator is the same as that of excitation fGn, i.e., 2-2H, while the velocity response has no such long-range correlation. An interesting discovery is that the ratio of kinetic energy to total energy decreases as increasing Hurst index H. Finally, for the responses of one and two degrees-of-freedom (DOF) nonlinear oscillators to fGn, the equivalent linearization method is applied to obtain the sample functions, correlation functions and mean-square values of the responses. Plenty of digital simulation results are obtained to support these solutions. It is shown that the approximate solution is effective for weakly nonlinear oscillators and it is feasible to apply the equivalent linearization to study multi-DOF weakly nonlinear oscillators.

References

References
1.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1990
,
Random Vibration and Statistical Linearization
,
Wiley
,
New York
.
2.
Soong
,
T. T.
, and
Grigoriu
,
M.
,
1993
,
Random Vibration of Mechanical and Structural System
,
PTR Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probabilistic Structural Dynamics, Advanced Theory and Applications
,
McGraw-Hill
,
New York
.
4.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
4
), pp.
230
248
.
5.
Yaglom
,
A. M.
,
1958
, “
Correlation Theory of Processes With Random Stationary n th Increments
,”
AMS Transl.
,
2
(
8
), pp.
87
141
.
6.
Mandelbrot
,
B. B.
, and
VanNess
,
J. W.
,
1968
, “
Fractional Brownian Motions, Fractional Noises and Applications
,”
SIAM Rev.
,
10
(
4
), pp.
422
437
.
7.
Biagini
,
F.
,
Hu
,
Y.
,
Øksendal
,
B.
, and
Zhang
,
T.
,
2008
,
Stochastic Calculus for Fractional Brownian Motion and Applications
,
Springer-Verlag
,
London
.
8.
Mishura
,
Y. S.
,
2008
,
Stochastic Calculus for Fractional Brownian Motion and Related Processes
,
Springer-Verlag
,
Berlin
.
9.
Mandelbrot
,
B. B.
,
1997
,
Fractals and Scaling in Finance: Discontinuity, Concentration, Risk
,
Springer Verlag
,
New York
.
10.
Cheridito
,
P.
,
2003
, “
Arbitrage in Fractional Brownian Motion Models
,”
Finance Stochastic
,
7
(
4
), pp.
533
553
.
11.
Leland
,
W. E.
,
Taqqu
,
M. S.
,
Willinger
,
W.
, and
Wilson
,
D. V.
,
1994
, “
On the Self-Similar Nature of Ethernet Traffic
,”
IEEE/ACM Trans. Networking
,
2
(
1
), pp.
1
15
.
12.
Yang
,
H.
,
Luo
,
G. B.
,
Karnchanaphanurach
,
P.
,
Louie
,
T. M.
,
Rech
,
I.
,
Cova
,
S.
,
Xun
,
L.
, and
Xie
,
X. S.
,
2003
, “
Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer
,”
Science
,
302
(
5643
), pp.
262
266
.
13.
Kou
,
S. C.
, and
Xie
,
X. S.
,
2004
, “
Generalized Langevin Equation With Fractional Gaussian Noise: Subdiffusion Within a Single Protein Molecule
,”
Phys. Rev. Lett.
,
93
(
18
), p.
180603
.
14.
Cheridito
,
P.
,
Kawaguchi
,
H.
, and
Maejima
,
M.
,
2003
, “
Fractional Ornstein–Uhlenbeck Processes
,”
Electron. J. Probab.
,
8
(
3
), pp.
1
14
.
15.
Kaarakka
,
T.
, and
Salminen
,
P.
,
2011
, “
On Fractional Ornstein–Uhlenbeck Processes
,”
Commun. Stochastic Anal.
,
5
(
1
), pp.
121
133
.
16.
Dung
,
N. T.
,
2012
, “
On Delayed Logistic Equation Driven by Fractional Brownian Motion
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031005
.
17.
Mandelbrot
,
B. B.
,
1982
,
The Fractal Geometry of Nature
,
W. H. Freeman
,
San Francisco, CA
.
18.
Papoulis
,
A.
,
1991
,
Probability, Random Variables and Stochastic Processes
,
3rd ed.
,
McGraw-Hill
,
New York
.
19.
Goldberg
,
R. R.
,
2008
,
Fourier Transforms
,
Cambridge University
,
Cambridge, MA
.
20.
Uchaikin
,
V. V.
,
2012
,
Fractional Derivatives for Physicists and Engineers: Vol. I Background and Theory
,
Springer-Verlag
,
Berlin
.
21.
Wong
,
E.
, and
Zakai
,
M.
,
1965
, “
On the Relation Between Ordinary and Stochastic Differential Equations
,”
Int. J. Eng. Sci.
,
3
(
2
), pp.
213
219
.
You do not currently have access to this content.