The recently developed approximate Wiener path integral (WPI) technique for determining the stochastic response of nonlinear/hysteretic multi-degree-of-freedom (MDOF) systems has proven to be reliable and significantly more efficient than a Monte Carlo simulation (MCS) treatment of the problem for low-dimensional systems. Nevertheless, the standard implementation of the WPI technique can be computationally cumbersome for relatively high-dimensional MDOF systems. In this paper, a novel WPI technique formulation/implementation is developed by combining the “localization” capabilities of the WPI solution framework with an appropriately chosen expansion for approximating the system response PDF. It is shown that, for the case of relatively high-dimensional systems, the herein proposed implementation can drastically decrease the associated computational cost by several orders of magnitude, as compared to both the standard WPI technique and an MCS approach. Several numerical examples are included, whereas comparisons with pertinent MCS data demonstrate the efficiency and reliability of the technique.

References

References
1.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2007
,
Simulation and the Monte Carlo Method
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
2.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
Wiley
,
Singapore
.
3.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2009
, “
An Approximate Approach for Nonlinear System Response Determination Under Evolutionary Stochastic Excitation
,”
Curr. Sci.
,
97
(
8
), pp.
1203
1211
.
4.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Nonlinear MDOF System Stochastic Response Determination Via a Dimension Reduction Approach
,”
Comput. Struct.
,
126
, pp.
135
148
.
5.
Pirrotta
,
A.
, and
Santoro
,
R.
,
2011
, “
Probabilistic Response of Nonlinear Systems Under Combined Normal and Poisson White Noise Via Path Integral Method
,”
Probab. Eng. Mech.
,
26
(
1
), pp.
26
32
.
6.
Soong
,
T. T.
, and
Grigoriu
,
M.
,
1993
,
Random Vibration of Mechanical and Structural Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
7.
Wiener
,
N.
,
1921
, “
The Average of an Analytic Functional
,”
Proc. Natl. Acad. Sci. U. S. A.
,
7
(
10
), pp.
253
260
.
8.
Daniel
,
P. J.
,
1919
, “
Integrals in an Infinite Number of Dimensions
,”
Ann. Math.
,
20
(
4
), pp.
281
288
.
9.
Feynman
,
R. P.
,
1948
, “
Space-Time Approach to Non-Relativistic Quantum Mechanics
,”
Rev. Mod. Phys.
,
20
(
2
), pp.
367
387
.
10.
Feynman
,
R. P.
, and
Hibbs
,
A. R.
,
1965
,
Quantum Mechanics and Path Integrals
,
McGraw-Hill
,
New York
.
11.
Chaichian
,
M.
, and
Demichev
,
A.
,
2001
,
Path Integrals in Physics, Volume I: Stochastic Processes and Quantum Mechanics
,
Institute of Physics Publishing
,
Philadelphia, PA
.
12.
Kleinert
,
H.
,
2009
,
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
,
5th ed.
,
World Scientific Publishing
,
Singapore
.
13.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.
14.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
ASCE J. Eng. Mech.
,
140
(
9
), p.
04014064
.
15.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.
16.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus to Physics
,
World Scientific Publishing
,
Singapore
.
17.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
, eds.,
2007
,
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Dordrecht, The Netherlands
.
18.
Di Paola
,
M.
,
Failla
,
G.
,
Pirrotta
,
A.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
The Mechanically Based Non-Local Elasticity: An Overview of Main Results and Future Challenges
,”
Philos. Trans. R. Soc. London, Ser. A
,
371
, p.
20120433
.
19.
Taniguchi
,
T.
, and
Cohen
,
E. G. D.
,
2008
, “
Inertial Effects in Nonequilibrium Work Fluctuations by a Path Integral Approach
,”
J. Stat. Phys.
,
130
(
1
), pp.
1
26
.
20.
Ewing
,
G. M.
,
1985
,
Calculus of Variations With Applications
,
Dover Publications
,
Mineola, NY
.
21.
Wehner
,
M. F.
, and
Wolfer
,
W. G.
,
1983
, “
Numerical Evaluation of Path-Integral Solutions to Fokker–Planck Equations
,”
Phys. Rev. A
,
27
(
5
), pp.
2663
2670
.
22.
Naess
,
A.
, and
Johnsen
,
J. M.
,
1993
, “
Response Statistics of Nonlinear, Compliant Offshore Structures by the Path Integral Solution Method
,”
Probab. Eng. Mech.
,
8
(
2
), pp.
91
106
.
23.
Beaman
,
J. J.
, and
Hedrick
,
J. K.
,
1981
, “
Improved Statistical Linearization for Analysis and Control of Nonlinear Stochastic Systems: Part I: An Extended Statistical Linearization Technique
,”
ASME J. Dyn. Syst., Meas., Control
,
103
(
1
), pp.
14
21
.
24.
Crandall
,
S. H.
,
1985
, “
Non-Gaussian Closure Techniques for Stationary Random Vibration
,”
Int. J. Non-Linear Mech.
,
20
(
1
), pp.
1
8
.
25.
Spanos
,
P. D.
, and
Donley
,
M. G.
,
1991
, “
Equivalent Statistical Quadratization for Nonlinear Systems
,”
J. Eng. Mech.
,
117
(
6
), pp.
1289
1310
.
26.
Spanos
,
P. D.
, and
Donley
,
M. G.
,
1992
, “
Non-Linear Multi-Degree-of-Freedom System Random Vibration by Equivalent Statistical Quadratization
,”
Int. J. Non-Linear Mech.
,
27
(
5
), pp.
735
748
.
27.
Lee
,
J.
,
1995
, “
Improving the Equivalent Linearization Technique for Stochastic Duffing Oscillators
,”
J. Sound Vib.
,
186
(
5
), pp.
846
855
.
28.
Muscolino
,
G.
,
Ricciardi
,
G.
, and
Vasta
,
M.
,
1997
, “
Stationary and Non-Stationary Probability Density Function for Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
32
(
6
), pp.
1051
1064
.
29.
Ricciardi
,
G.
,
2007
, “
A Non-Gaussian Stochastic Linearization Method
,”
Probab. Eng. Mech.
,
22
(
1
), pp.
1
11
.
30.
Er
,
G. K.
,
2000
, “
Exponential Closure Method for Some Randomly Excited Non-Linear Systems
,”
Int. J. Non-Linear Mech.
,
35
(
1
), pp.
69
78
.
31.
Di Paola
,
M.
, and
Sofi
,
A.
,
2002
, “
Approximate Solution of the Fokker–Planck–Kolmogorov Equation
,”
Probab. Eng. Mech.
,
17
(
4
), pp.
369
384
.
32.
Lin
,
Y. K.
,
1967
,
Probabilistic Theory of Structural Dynamics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.