The surface energy plays a significant role in solids and structures at the small scales, and an explicit expression for surface energy is prerequisite for studying the nanostructures via energy methods. In this study, a general formula for surface energy at finite deformation is constructed, which has simple forms and clearly physical meanings. Next, the strain energy formulas both for isotropic and anisotropic surfaces under small deformation are derived. It is demonstrated that the surface elastic energy is also dependent on the nonlinear Green strain due to the impact of residual surface stress. Then, the strain energy formula for residually stressed elastic solids is given. These results are instrumental to the energy approach for nanomechanics. Finally, the proposed results are applied to investigate the elastic stability and natural frequency of nanowires. A deep analysis of these two examples reveals two length scales characterizing the significance of surface energy. One is the critical length of nanostructures for self-buckling; the other reflects the competition between residual surface stress and surface elasticity, indicating that the surface effect does not always strengthen the stiffness of nanostructures. These results are conducive to shed light on the importance of the residual surface stress and the initial stress in the bulk solids.

References

References
1.
Chen
,
C. Q.
,
Shi
,
Y.
,
Zhang
,
Y. S.
,
Zhu
,
J.
, and
Yan
,
Y. J.
,
2006
, “
Size Dependence of Young’s Modulus of ZnO Nanowires
,”
Phys. Rev. Lett.
,
96
(
7
), p.
075505
.10.1103/PhysRevLett.96.075505
2.
Sun
,
C. Q.
,
Wang
,
Y.
,
Tay
,
B. K.
,
Li
,
S.
,
Huang
,
H.
, and
Zhang
,
Y. B.
,
2002
, “
Correlation Between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom
,”
J. Phys. Chem. B
,
106
(41), pp.
10701
10705
.10.1021/jp025868l
3.
Miller
,
R. E.
, and
Shenoy
, V
. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(3), pp.
139
147
.10.1088/0957-4484/11/3/301
4.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(4), pp.
535
537
.10.1063/1.1539929
5.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(5), pp.
663
671
.10.1115/1.1781177
6.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(8), pp.
1827
1854
.10.1016/j.jmps.2005.02.012
7.
Huang
,
Z. P.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(1–4), pp.
151
163
.10.1007/s00707-006-0381-0
8.
Zhao
,
X. J.
,
Bordas
,
S. P. A.
, and
Qu
,
J.
,
2013
, “
A Hybrid Smoothed Extended Finite Element/Level Set Method for Modeling Equilibrium Shapes of Nano-Inhomogeneities
,”
Comput. Mech.
,
52
(6), pp.
1417
1428
.10.1007/s00466-013-0884-1
9.
Zhao
,
X. J.
,
Dudda
,
R.
,
Bordas
,
S. P. A.
, and
Qu
,
J.
,
2013
, “
Effects of Elastic Strain Energy and Interfacial Stress on the Equilibrium Morphology of Misfit Particles in Heterogeneous Solids
,”
J. Mech. Phys. Solids
,
61
(6), pp.
1433
1445
.10.1016/j.jmps.2013.01.012
10.
Gao
,
X.
,
Hao
,
F.
,
Huang
,
Z. P.
, and
Fang
,
D. N.
,
2014
, “
Mechanics of Adhesive at the Nanoscale: the Effect of Surface Stress
,”
Int. J. Solids Struct.
,
51
(
3–4
), pp.
566
674
.10.1016/j.ijsolstr.2013.10.017
11.
Gao
,
X.
,
Huang
,
Z. P.
,
Qu
,
J.
, and
Fang
,
D. N.
,
2014
, “
A Curvature-Dependent Interfacial Energy-Based Interface Stress Theory and Its Applications to Nano-Structured Materials: (I) General Theory
,”
J. Mech. Phys. Solids
,
66
, pp.
59
77
.10.1016/j.jmps.2014.01.010
12.
Chen
,
S. H.
, and
Yao
,
Y.
,
2014
, “
Elastic Theory of Nanomaterials Based on Surface-Energy Density
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121002
.10.1115/1.4028780
13.
Wang
,
J.
,
Huang
,
Z.
,
Duan
,
H.
,
Yu
,
S.
,
Feng
,
X.
,
Wang
,
G.
,
Zhang
,
W.
, and
Wang
,
T.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sin.
,
24
(
1
), pp.
52
82
.10.1016/S0894-9166(11)60009-8
14.
Gurtin
,
M. E.
, and
Murdoch
,
A.
I
.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(4), pp.
291
323
.10.1007/BF00261375
15.
Gurtin
,
M. E.
, and
Murdoch
,
A.
I
.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(6), pp.
431
440
.10.1016/0020-7683(78)90008-2
16.
Povstenko
,
Y.
,
1993
, “
Theoretical Investigation of Phenomena Caused by Heterogeneous Surface Tension in Solids
,”
J. Mech. Phys. Solids
,
41
(
9
), pp.
1499
1514
.10.1016/0022-5096(93)90037-G
17.
Huang
,
Z. P.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(3–4), pp.
195
210
.10.1007/s00707-005-0286-3
18.
Gao
,
X.
,
Hao
,
F.
,
Huang
,
Z. P.
, and
Fang
,
D. N.
,
2013
, “
Boussinesq Problem With the Surface Effect and Its Application to Contact Mechanics at the Nanoscale
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2620
2630
.10.1016/j.ijsolstr.2013.04.007
19.
Ogden
,
R. W.
,
1982
, “
Elastic Deformation of Rubberlike Materials
,” Mechanics of Solids
(Rondey Hill 60th Anniversary Volume)
,
Pergamon, Oxford, UK
, pp.
499
537
.
20.
Huang
,
Z. P.
, and
Wang
,
J.
,
2013
, “
Micromechanics of Nanocomposites With Interface Energy Effect
,”
Handbook of Micromechanics and Nanomechanics
,
Pan Stanford Publishing
,
Singapore
, pp.
303
348
.
21.
Gurtin
,
M. E.
, and
Murdoch
,
A. I
,
.
,
1975
, “
Addenda to Our Paper a Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
59
(4), pp.
389
390
.10.1007/BF00250426
22.
Hoger
,
A.
,
1986
, “
On the Determination of Residual Stress in an Elastic Body
,”
J. Elasticity
,
16
(3), pp.
303
324
.10.1007/BF00040818
23.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2009
, “
Surface Effects on Buckling of Nanowires Under Uniaxial Compression
,”
Appl. Phys. Lett.
,
94
(
14
), p.
141913
.10.1063/1.3117505
24.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.10.1021/nl0733233
25.
Koiter
,
W. T.
,
1945
, “
On the Stability of Elastic Equilibrium
,” Ph.D. thesis, Delft, H. J. Paris, Amsterdam, The Netherlands.
26.
Heijden
,
A. M. A. V. D.
,
2008
,
W. T. Koiter’s Elastic Stability of Solids and Structures
,
Cambridge University Press
,
New York
.
27.
Gurtin
,
M. E.
,
Markenscoff
,
X.
, and
Thurston
,
R. N.
,
1976
, “
Effect of Surface Stress on the Natural Frequency of Thin Crystals
,”
Appl. Phys. Lett.
,
29
(
9
), p. 529.10.1063/1.89173
28.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
,
90
(
23
), p.
231904
.10.1063/1.2746950
You do not currently have access to this content.