Under quasi-static uniaxial compression, inserting aluminum foams into the interstices of a metallic sandwich panel with corrugated core increased significantly both its peak crushing strength and energy absorption per unit mass. This beneficial effect diminished however if the foam relative density was relatively low or the compression velocity became sufficiently high. To provide insight into the varying role of aluminum foam filler with increasing compression velocity, the crushing response and collapse modes of all metallic corrugate-cored sandwich panels filled with close-celled aluminum foams were studied using the method of finite elements (FEs). The constraint that sandwich panels with and without foam filling had the same total weight was enforced. The effects of plastic hardening and strain rate sensitivity of the strut material as well as foam/strut interfacial debonding were quantified. Three collapse modes (quasi-static, transition, and shock modes) were identified, corresponding to different ranges of compression velocity. Strengthening due to foam insertion and inertial stabilization both acted to provide support for the struts against buckling. At relatively low compression velocities, the struts were mainly strengthened by the surrounding foam; at high compression velocities, inertia stabilization played a more dominant role than foam filling.

Reference

Reference
1.
Calladine
,
C. R.
, and
English
,
R. W.
,
1984
, “
Strain-Rate and Inertia Effects in the Collapse of Two Types of Energy-Absorbing Structure
,”
Int. J. Mech. Sci.
,
26
(
11–12
), pp.
689
701
.10.1016/0020-7403(84)90021-3
2.
Yan
,
L. L.
,
Yu
,
B.
,
Han
,
B.
,
Chen
,
C. Q.
,
Zhang
,
Q. C.
, and
Lu
,
T. J.
,
2013
, “
Compressive Strength and Energy Absorption of Sandwich Panels With Aluminum Foam-Filled Corrugated Cores
,”
Compos. Sci. Technol.
,
86
, pp.
142
148
.10.1016/j.compscitech.2013.07.011
3.
Han
,
B.
,
Yan
,
L. L.
,
Yu
,
B.
,
Chen
,
C. Q.
,
Zhang
,
Q. C.
, and
Lu
,
T. J.
,
2014
, “
Collapse Mechanism Maps for Metal Sandwich Plates With Aluminum Foam-Filled Corrugated Cores
,”
J. Mech. Mater. Strut.
,
9
(
4
), pp.
397
425
.10.2140/jomms.2014.9.397
4.
Vaziri
,
A.
,
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2006
, “
Metal Sandwich Plates With Polymer Foam-Filled Cores
,”
J. Mech. Mater. Struct.
,
1
(
1
), pp.
97
127
.10.2140/jomms.2006.1.97
5.
Stout
,
M. G.
, and
Follansbee
,
P. S.
,
1986
, “
Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel
,”
ASME J. Eng. Mater. Technol.
,
108
(
4
), pp.
344
353
.10.1115/1.3225893
6.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.10.1016/S0022-5096(99)00082-4
7.
Hanssen
,
A. G.
,
Hopperstad
,
O. S.
,
Langseth
,
M.
, and
Ilstad
,
H.
,
2002
, “
Validation of Constitutive Models Applicable to Aluminium Foams
,”
Int. J. Mech. Sci.
,
44
(
2
), pp.
359
406
.10.1016/S0020-7403(01)00091-1
8.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
9.
Pattofatto
,
S.
,
Elnasri
,
I.
,
Zhao
,
H.
,
Tsitsiris
,
H.
,
Hild
,
F.
, and
Girard
,
Y.
,
2007
, “
Shock Enhancement of Cellular Structures Under Impact Loading: Part II Analysis
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2672
2686
.10.1016/j.jmps.2007.04.004
10.
Mcshane
,
G. J.
,
Pingle
,
S. M.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2012
, “
Dynamic Buckling of an Inclined Strut
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2830
2838
.10.1016/j.ijsolstr.2012.03.045
11.
Vaughn
,
D. G.
,
Canning
,
J. M.
, and
Hutchinson
,
J. W.
,
2005
, “
Coupled Plastic Wave Propagation and Column Buckling
,”
ASME J. Appl. Mech.
,
72
(
1
), pp.
139
146
.10.1115/1.1825437
12.
Markaki
,
A. E.
, and
Clyne
,
T. W.
,
2003
, “
Mechanics of Thin Ultra-Light Stainless Steel Sandwich Sheet Material
,”
Acta Mater.
,
51
(
5
), pp.
1341
1350
.10.1016/S1359-6454(02)00528-1
13.
Jin
,
M. Z.
,
Chen
,
C. Q.
, and
Lu
,
T. J.
,
2013
, “
The Mechanical Behavior of Porous Metal Fiber Sintered Sheets
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
161
174
.10.1016/j.jmps.2012.08.006
14.
Jin
,
M. Z.
,
Zhao
,
T. F.
, and
Chen
,
C. Q.
,
2014
, “
The Effects of Micro-Defects and Crack on the Mechanical Properties of Metal Fiber Sintered Sheets
,”
Int. J. Solids Struct.
,
51
(
10
), pp.
1946
1953
.10.1016/j.ijsolstr.2014.02.004
You do not currently have access to this content.