Behavior of friction at material interfaces is inherently nonlinear causing variations and uncertainties in interfacial energy dissipation. A finite element model (FEM) of an elastic–plastic spherical contact subjected to periodic normal and tangential loads is developed to study fundamental mechanisms contributing to the frictional energy dissipation. Particular attention is devoted to three mechanisms: the elastic mismatch between contacting pairs, plastic deformations, and phase difference between the normal and tangential fluctuations in loading. Small tangential loads simulating mild vibrational environments are applied to the model and resulting friction (hysteresis) loops are used to estimate the energy loss per loading cycle. The energy losses are then correlated against the maximum tangential load as a power-law where the exponents show the degree of nonlinearity. Exponents increase significantly with in-phase loading and increasing plasticity. Although increasing elastic mismatch facilitates more dissipation during normal load fluctuations, it has negligible influence on the power-law exponents in tangential loading. Among all the configurations considered, out-of-phase loading with minimal mismatch and no plasticity lead to the smallest power-law exponents; promising linear frictional dissipation. The duration the contact remains stuck during a loading cycle is found to have a predominant influence on the power-law exponents. Thus, controlling that duration enables tunable degree of nonlinearity and magnitude in frictional energy dissipation.

References

References
1.
Lazan
,
B. J.
,
1968
,
Damping of Materials and Members in Structural Mechanics
,
Pergamon Press
,
London, UK
.
2.
Goodman
,
L.
,
1976
, “
Material Damping and Slip Damping
,”
Shock and Vibration Handbook
,
McGraw-Hill
,
New York
, pp.
1
28
.
3.
Goodman
,
L. E.
, and
Brown
,
C. B.
,
1962
, “
Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
17
22
.10.1115/1.3636453
4.
Mindlin
,
R. D.
,
Mason
,
W. P.
,
Osmer
,
T. F.
, and
Deresiewicz
,
H.
,
1952
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,”
First U.S. National Congress of Applied Mechanics
, Chicago, IL, June 11–16, 1951, pp.
203
208
.
5.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. London, Ser. Math. Phys. Sci.
,
230
(
1183
), pp.
531
548
.10.1098/rspa.1955.0149
6.
Johnson
,
K. L.
,
1962
, “
Discussion: ‘Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading’ (Goodman, L. E., and Brown, C. B., 1962, ASME J. Appl. Mech., 29, pp. 17–22)
,”
ASME J. Appl. Mech.
,
29
(
4
), p.
763
.10.1115/1.3640678
7.
Segalman
,
D. J.
,
Bergman
,
L. A.
, and
Starr
,
M. J.
,
2006
, “
Joints Workshop 2006 Final Report
,” NSF & Sandia National Laboratories, Arlington, VA, Report No:
SAND2007-7761
.10.2172/958188
8.
Segalman
,
D. J.
,
Gregory
,
D. L.
,
Starr
,
M. J.
,
Resor
,
B. R.
,
Jew
,
M. D.
, and
Lauffer
,
J. P.
,
2009
,
Handbook on Dynamics of Jointed Structures
,
Sandia National Laboratories
,
Albuquerque, NM
.
9.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Effects of Surface Roughness and Lubrication on the Early Stages of Fretting of Mechanical Lap Joints
,”
Wear
,
271
(
11–12
), pp.
2928
2939
.10.1016/j.wear.2011.06.011
10.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.
11.
Griffin
,
J. H.
, and
Menq
,
C.-H.
,
1991
, “
Friction Damping of Circular Motion and Its Implications to Vibration Control
,”
ASME J. Vib. Acoust.
,
113
(
2
), pp.
225
229
.10.1115/1.2930173
12.
Menq
,
C.-H.
,
Chidamparam
,
P.
, and
Griffin
,
J. H.
,
1991
, “
Friction Damping of Two-Dimensional Motion and Its Application in Vibration Control
,”
J. Sound Vib.
,
144
(
3
), pp.
427
447
.10.1016/0022-460X(91)90562-X
13.
Jang
,
Y. H.
, and
Barber
,
J. R.
,
2011
, “
Effect of Phase on the Frictional Dissipation in Systems Subjected to Harmonically Varying Loads
,”
Eur. J. Mech. A
,
30
(
3
), pp.
269
274
.10.1016/j.euromechsol.2011.01.008
14.
Barber
,
J. R.
,
Davies
,
M.
, and
Hills
,
D. A.
,
2011
, “
Frictional Elastic Contact With Periodic Loading
,”
Int. J. Solids Struct.
,
48
(
13
), pp.
2041
2047
.10.1016/j.ijsolstr.2011.03.008
15.
Putignano
,
C.
,
Ciavarella
,
M.
, and
Barber
,
J. R.
,
2011
, “
Frictional Energy Dissipation in Contact of Nominally Flat Rough Surfaces Under Harmonically Varying Loads
,”
J. Mech. Phys. Solids
,
59
(
12
), pp.
2442
2454
.10.1016/j.jmps.2011.09.005
16.
Davies
,
M.
,
Barber
,
J. R.
, and
Hills
,
D. A.
,
2012
, “
Energy Dissipation in a Frictional Incomplete Contact With Varying Normal Load
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
13
21
.10.1016/j.ijmecsci.2011.11.006
17.
Barber
,
J. R.
,
2012
, “
Frictional Systems Under Periodic Loads—History-Dependence, Non-Uniqueness and Energy Dissipation
,”
J. Phys. Conf. Ser.
,
382
(
1
), p.
012002
.10.1088/1742-6596/382/1/012002
18.
Ciavarella
,
M.
,
1998
, “
The Generalized Cattaneo Partial Slip Plane Contact Problem. I—Theory
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2349
2362
.10.1016/S0020-7683(97)00154-6
19.
Ciavarella
,
M.
,
1998
, “
The Generalized Cattaneo Partial Slip Plane Contact Problem. II—Examples
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2363
2378
.10.1016/S0020-7683(97)00155-8
20.
Jäger
,
J.
,
1998
, “
A New Principle in Contact Mechanics
,”
ASME J. Tribol.
,
120
(
4
), pp.
677
684
.10.1115/1.2833765
21.
Patil
,
D. B.
, and
Eriten
,
M.
,
2014
, “
Effects of Interfacial Strength and Roughness on the Static Friction Coefficient
,”
Tribol. Lett.
,
56
(
2
), pp.
355
374
.10.1007/s11249-014-0414-0
22.
ABAQUS Inc.,
2013
, “Abaqus Theory Manual.” Ver. V6.12, Dassault Systemes, Vélizy-Villacoublay, France.
23.
Hill
,
R.
,
1998
,
The Mathematical Theory of Plasticity
,
Oxford University
,
Oxford, UK
, p.
257
24.
Ambrico
,
J. M.
, and
Begley
,
M. R.
,
2000
, “
Plasticity in Fretting Contact
,”
J. Mech. Phys. Solids
,
48
(
11
), pp.
2391
2417
.10.1016/S0022-5096(99)00103-9
25.
Perić
,
D.
, and
Owen
,
D. R. J.
,
1992
, “
Computational Model for 3-D Contact Problems With Friction Based on the Penalty Method
,”
Int. J. Numer. Methods Eng.
,
35
(
6
), pp.
1289
1309
.10.1002/nme.1620350609
26.
Qiu
,
X.
,
Plesha
,
M. E.
, and
Meyer
,
D. W.
,
1991
, “
Stiffness Matrix Integration Rules for Contact-Friction Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
385
399
.10.1016/0045-7825(91)90249-6
27.
Cattaneo
,
C.
,
1938
, “
Sul Contatto di due Corpi Elastici: Distribuzione Locale Degli Sforzi
,”
Rend. Accad. Naz. Lincei
,
27
(
6
), pp.
342
348
.
28.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
29.
Etsion
,
I.
,
2010
, “
Revisiting the Cattaneo–Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies
,”
ASME J. Tribol.
,
132
(
2
), p.
020801
.10.1115/1.4001238
30.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5736
5749
.10.1016/j.ijsolstr.2005.07.034
31.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
Experimental Study of Adhesive Static Friction in a Spherical Elastic–Plastic Contact
,”
ASME J. Tribol.
,
130
(
2
), p.
021401
.10.1115/1.2842247
32.
Zolotarevskiy
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2011
, “
The Evolution of Static Friction for Elastic–Plastic Spherical Contact in Pre-Sliding
,”
ASME J. Tribol.
,
133
(
3
), p.
034502
.10.1115/1.4004304
33.
Dundurs
,
J.
,
1967
, “
Effect of Elastic Constants on Stress in a Composite Under Plane Deformation
,”
J. Compos. Mater.
,
1
(
3
), pp.
310
322
.10.1177/002199836700100306
34.
Greaves
,
G. N.
,
Greer
,
A. L.
,
Lakes
,
R. S.
, and
Rouxel
,
T.
,
2011
, “
Poisson's Ratio and Modern Materials
,”
Nat. Mater.
,
10
(
11
), pp.
823
837
.10.1038/nmat3134
35.
Cowles
,
B. A.
,
1989
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.10.1007/BF00012667
36.
Stingl
,
B.
,
Ciavarella
,
M.
, and
Hoffmann
,
N.
,
2013
, “
Frictional Dissipation in Elastically Dissimilar Oscillating Hertzian Contacts
,”
Int. J. Mech. Sci.
,
72
, pp.
55
62
.10.1016/j.ijmecsci.2013.03.012
37.
Ashby
,
M. F.
, and
Jones
,
D. R. H.
,
2005
,
Engineering Materials 1: An Introduction to Properties, Applications and Design
,
Butterworth-Heinemann
,
Oxford, UK
.
38.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine. Angew. Math.
,
92
(
110
), pp.
156
171
.
39.
Groche
,
P.
,
Mueller
,
C.
,
Traub
,
T.
, and
Butterweck
,
K.
,
2013
, “
Experimental and Numerical Determination of Roll Forming Loads
,”
Steel Res. Int.
,
85
(
1
), pp.
112
122
.10.1002/srin.201300190
40.
Kirkhorn
,
L.
,
Frogner
,
K.
,
Andersson
,
M.
, and
Ståhl
,
J. E.
,
2012
, “
Improved Tribotesting for Sheet Metal Forming
,”
Procedia CIRP
,
3
, pp.
507
512
.10.1016/j.procir.2012.07.087
41.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, MA
.
42.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
,
2005
, “
Unloading of an Elastic–Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3716
3729
.10.1016/j.ijsolstr.2004.12.006
43.
Zait
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2010
, “
Unloading of an Elastic–Plastic Spherical Contact Under Stick Contact Condition
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
990
997
.10.1016/j.ijsolstr.2009.12.014
You do not currently have access to this content.