We investigate the effective elastic properties of disordered heterogeneous materials whose Young's modulus varies spatially as a lognormal random field. For one-, two-, and three-dimensional (1D, 2D, and 3D) rectangular blocks, we decompose the spatial fluctuations of the Young's log-modulus F=lnE into first- and higher-order terms and find the joint distribution of the effective elastic tensor by multiplicatively combining the term-specific effects. The analytical results are in good agreement with Monte Carlo simulations. Through parametric analysis of the analytical solutions, we gain insight into the effective elastic properties of this class of heterogeneous materials. The results have applications to structural/mechanical reliability assessment and design.

References

References
1.
Beran
,
M. J.
,
1968
, “
Monographs in Statistical Physics and Thermodynamics
,”
Statistical Continuum Theories
, Vol.
xv
,
Interscience Publishers
, New York, p.
424
.
2.
Kachanov
,
M.
, and
Sevostianov
,
I.
,
2013
,
Effective Properties of Heterogeneous Materials
, Vol.
193
,
Springer
, Dordrecht, The Netherlands.
3.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Materials
, Vol.
xx
(North-Holland Series in Applied Mathematics and Mechanics),
North-Holland
,
Amsterdam
, The Netherlands, p.
687
.
4.
Sanchez-Palencia
,
E.
,
Zaoui
,
A.
, and
International Centre for Mechanical Sciences
,
1987
, “
Homogenization Techniques for Composite Media: Lectures Delivered at the CISM International Center for Mechanical Sciences
,” (Lecture Notes in Physics, Udine, Italy, July 1–5, 1985, Vol. ix), Springer-Verlag, Berlin, Germany, p.
397
.
5.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
, Vol.
16
,
Springer
, New York.
6.
Gupta
,
H. S.
,
Stachewicz
,
U.
,
Wagermaier
,
W.
,
Roschger
,
P.
,
Wagner
,
H. D.
, and
Fratzl
,
P.
,
2006
, “
Mechanical Modulation at the Lamellar Level in Osteonal Bone
,”
J. Mater. Res.
,
21
(
8
), pp.
1913
1921
.10.1557/jmr.2006.0234
7.
Tai
,
K.
,
Dao
,
M.
,
Suresh
,
S.
,
Palazoglu
,
A.
, and
Ortiz
,
C.
,
2007
, “
Nanoscale Heterogeneity Promotes Energy Dissipation in Bone
,”
Nature Mater.
,
6
(
6
), pp.
454
462
.10.1038/nmat1911
8.
Younis
,
S.
,
Kauffmann
,
Y.
,
Blouch
,
L.
, and
Zolotoyabko
,
E.
,
2012
, “
Inhomogeneity of Nacre Lamellae on the Nanometer Length Scale
,”
Cryst. Growth Des.
,
12
(
9
), pp.
4574
4579
.10.1021/cg3007734
9.
Zhang
,
T.
,
Li
,
X.
,
Kadkhodaei
,
S.
, and
Gao
,
H.
,
2012
, “
Flaw Insensitive Fracture in Nanocrystalline Graphene
,”
Nano Lett.
,
12
(
9
), pp.
4605
4610
.10.1021/nl301908b
10.
Dimas
,
L. S.
,
Giesa
,
T.
, and
Buehler
,
M. J.
,
2014
, “
Coupled Continuum and Discrete Analysis of Random Heterogeneous Materials: Elasticity and Fracture
,”
J. Mech. Phys. Solids
,
63
, pp.
481
490
.10.1016/j.jmps.2013.07.006
11.
Veneziano
,
D.
,
2003
,
Computational Fluid and Solid Mechanics
,
Elsevier
, Cambridge, MA.
12.
Ostoja-Starzewski
,
M.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
(
19
), pp.
2429
2455
.10.1016/S0020-7683(97)00144-3
13.
Ghanem
,
R.
, and
Spanos
,
P. D.
,
1990
, “
Polynomial Chaos in Stochastic Finite-Elements
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
197
202
.10.1115/1.2888303
14.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.10.1016/j.cma.2008.11.007
15.
Vanmarcke
,
E.
, and
Grigoriu
,
M.
,
1983
, “
Stochastic Finite-Element Analysis of Simple Beams
,”
ASCE J. Eng. Mech.
,
109
(
5
), pp.
1203
1214
.10.1061/(ASCE)0733-9399(1983)109:5(1203)
16.
Ngah
,
M. F.
, and
Young
,
A.
,
2007
, “
Application of the Spectral Stochastic Finite Element Method for Performance Prediction of Composite Structures
,”
Compos. Struct.
,
78
(
3
), pp.
447
456
.10.1016/j.compstruct.2005.11.009
17.
Pellissetti
,
M. F.
, and
Ghanem
,
R. G.
,
2000
, “
Iterative Solution of Systems of Linear Equations Arising in the Context of Stochastic Finite Elements
,”
Adv. Eng. Software
,
31
(
8–9
), pp.
607
616
.10.1016/S0965-9978(00)00034-X
18.
Yamazaki
,
F.
,
Shinozuka
,
M.
, and
Dasgupta
,
G.
,
1988
, “
Neumann Expansion for Stochastic Finite-Element Analysis
,”
ASCE J. Eng. Mech.
,
114
(
8
), pp.
1335
1354
.10.1061/(ASCE)0733-9399(1988)114:8(1335)
19.
Huyse
,
L.
, and
Maes
,
M. A.
,
2001
, “
Random Field Modeling of Elastic Properties Using Homogenization
,”
ASCE J. Eng. Mech.
,
127
(
1
), pp.
27
36
.10.1061/(ASCE)0733-9399(2001)127:1(27)
20.
Ostojastarzewski
,
M.
, and
Wang
,
C.
,
1989
, “
Linear Elasticity of Planar Delaunay Networks—Random Field Characterization of Effective Moduli
,”
Acta Mech.
,
80
(
1–2
), pp.
61
80
.10.1007/BF01178180
21.
Arwade
,
S. R.
, and
Deodatis
,
G.
,
2011
, “
Variability Response Functions for Effective Material Properties
,”
Probab. Eng. Mech.
,
26
(
2
), pp.
174
181
.10.1016/j.probengmech.2010.11.005
22.
Graham-Brady
,
L.
,
2010
, “
Statistical Characterization of Meso-Scale Uniaxial Compressive Strength in Brittle Materials With Randomly Occurring Flaws
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2398
2413
.10.1016/j.ijsolstr.2010.04.034
23.
Ma
,
J. A.
,
Temizer
,
I.
, and
Wriggers
,
P.
,
2011
, “
Random Homogenization Analysis in Linear Elasticity Based on Analytical Bounds and Estimates
,”
Int. J. Solids Struct.
,
48
(
2
), pp.
280
291
.10.1016/j.ijsolstr.2010.10.004
24.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1988
, “
Response Variability of Stochastic Finite-Element Systems
,”
ASCE J. Eng. Mech.
,
114
(
3
), pp.
499
519
.10.1061/(ASCE)0733-9399(1988)114:3(499)
25.
Shinozuka
,
M.
,
1987
, “
Structural Response Variability
,”
ASCE J. Eng. Mech.
,
113
(
6
), pp.
825
842
.10.1061/(ASCE)0733-9399(1987)113:6(825)
26.
Teferra
,
K.
,
Arwade
,
S. R.
, and
Deodatis
,
G.
,
2012
, “
Stochastic Variability of Effective Properties Via the Generalized Variability Response Function
,”
Comput. Struct.
,
110
, pp.
107
115
.10.1016/j.compstruc.2012.07.005
27.
Teferra
,
K.
,
Arwade
,
S. R.
, and
Deodatis
,
G.
,
2014
, “
Generalized Variability Response Functions for Two-Dimensional Elasticity Problems
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
121
137
.10.1016/j.cma.2014.01.013
28.
Veneziano
,
D.
, and
Tabaei
,
A.
,
2001
, “
Analysis of Variance Method for the Equivalent Conductivity of Rectangular Blocks
,”
Water Resour. Res.
,
37
(
12
), pp.
2919
2927
.10.1029/2000WR000051
29.
See supplemental material at for detailed derivations of the equations and supplementary results.
30.
Karhunen
,
K.
,
1946
,
Zur Spektraltheorie Stochastischer Prozesse
, Ann. Acad. Sci. Fenn., Ser. A, 37.
You do not currently have access to this content.