Residual stress and crystalline defects in silicon wafers can affect solar cell reliability and performance. Infrared photoelastic measurements are performed for stress mapping in monocrystalline silicon photovoltaic (PV) wafers and compared to photoluminescence (PL) measurements. The wafer stresses are then quantified using a discrete dislocation-based numerical modeling approach, which leads to simulated photoelastic images. The model accounts for wafer stress relaxation due to dislocation structures. The wafer strain energy is then analyzed with respect to the orientation of the dislocation structures. The simulation shows that particular locations on the wafer have only limited slip systems that reduce the wafer strain energy. Experimentally observed dislocation structures are consistent with these observations from the analysis, forming the basis for a more quantitative infrared photoelasticity-based inspection method.

References

1.
Istratov
,
A. A.
,
Hieslmair
,
H.
,
Vyvenko
,
O. F.
,
Weber
,
E. R.
, and
Schindler
,
R.
,
2002
, “
Defect Recognition and Impurity Detection Techniques in Crystalline Silicon for Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
72
(
1–4
), pp.
441
451
.10.1016/S0927-0248(01)00192-1
2.
Goodrich
,
A.
,
Hacke
,
P.
,
Wang
,
Q.
,
Sopori
,
B.
,
Margolis
,
R.
,
James
,
T. L.
, and
Woodhouse
,
M.
,
2013
, “
A Wafer-Based Monocrystalline Silicon Photovoltaics Road Map: Utilizing Known Technology Improvement Opportunities for Further Reductions in Manufacturing Costs
,”
Sol. Energy Mater. Sol. Cells
,
114
, pp.
110
135
.10.1016/j.solmat.2013.01.030
3.
Yang
,
C.
,
Mess
,
F.
,
Skenes
,
K.
,
Melkote
,
S.
, and
Danyluk
,
S.
,
2013
, “
On the Residual Stress and Fracture Strength of Crystalline Silicon Wafers
,”
Appl. Phys. Lett.
,
102
(
2
), p.
021909
.10.1063/1.4776706
4.
Hu
,
S. M.
,
1973
, “
Dislocations in Thermally Stressed Silicon Wafers
,”
Appl. Phys. Lett.
,
22
(5), pp.
261
264
.10.1063/1.1654632
5.
He
,
S.
,
Danyluk
,
S.
,
Tarasov
,
I.
, and
Ostapenko
,
S.
,
2006
, “
Residual Stresses in Polycrystalline Silicon Sheet and Their Relation to Electron-Hole Lifetime
,”
Appl. Phys. Lett.
,
89
(
11
), p.
111909
.10.1063/1.2354308
6.
Haunschild
,
J.
,
Glatthaar
,
M.
,
Demant
,
M.
,
Nievendick
,
J.
,
Motzko
,
M.
,
Rein
,
S.
, and
Weber
,
E. R.
,
2010
, “
Quality Control of As-Cut Multicrystalline Silicon Wafers Using Photoluminescence Imaging for Solar Cell Production
,”
Sol. Energy Mater. Sol. Cells
,
94
(
12
), pp.
2007
2012
.10.1016/j.solmat.2010.06.003
7.
Trupke
,
T.
,
Mitchell
,
B.
,
Weber
,
J. W.
,
McMillan
,
W.
,
Bardos
,
R. A.
, and
Kroeze
,
R.
,
2012
, “
Photoluminescence Imaging for Photovoltaic Applications
,”
Energy Procedia
,
15
(
2011
), pp.
135
146
.10.1016/j.egypro.2012.02.016
8.
Mchedlidze
,
T.
,
Seifert
,
W.
,
Kittler
,
M.
,
Blumenau
,
A. T.
,
Birkmann
,
B.
,
Mono
,
T.
, and
Müller
,
M.
,
2012
, “
Capability of Photoluminescence for Characterization of Multi-Crystalline Silicon
,”
J. Appl. Phys.
,
111
(
7
), p.
073504
10.1063/1.3699275
9.
Fukuzawa
,
M.
, and
Yamada
,
M.
,
2001
, “
Photoelastic Characterization of Si Wafers by Scanning Infrared Polariscope
,”
J. Cryst. Growth
,
229
(
1–4
), pp.
22
25
.10.1016/S0022-0248(01)01043-0
10.
Yamada
,
M.
,
1993
, “
High-Sensitivity Computer-Controlled Infrared Polariscope
,”
Rev. Sci. Instrum.
,
64
(
7
), p.
1815
.10.1063/1.1144016
11.
Zheng
,
T.
, and
Danyluk
,
S.
,
2011
, “
Study of Stresses in Thin Silicon Wafers With Near-Infrared Phase Stepping Photoelasticity
,”
J. Mater. Res.
,
17
(
01
), pp.
36
42
.10.1557/JMR.2002.0008
12.
Horn
,
G.
,
Lesniak
,
J.
,
Mackin
,
T.
, and
Boyce
,
B.
,
2005
, “
Infrared Grey-Field Polariscope: A Tool for Rapid Stress Analysis in Microelectronic Materials and Devices
,”
Rev. Sci. Instrum.
,
76
(
4
), p.
045108
.10.1063/1.1884189
13.
Inzinga
,
R. A.
,
Lin
,
T.-W.
,
Yadav
,
M.
,
Johnson
,
H. T.
, and
Horn
,
G. P.
,
2011
, “
Characterization and Control of Residual Stress and Curvature in Anodically Bonded Devices and Substrates With Etched Features
,”
Exp. Mech.
,
52
(
6
), pp.
637
648
.10.1007/s11340-011-9528-6
14.
Lin
,
T.-W.
,
Elkhatib
,
O.
,
Makinen
,
J.
,
Palokangas
,
M.
,
Johnson
,
H. T.
, and
Horn
,
G. P.
,
2013
, “
Residual Stresses at Cavity Corners in Silicon-on-Insulator Bonded Wafers
,”
J. Micromech. Microeng.
,
23
(
9
), p.
095004
.10.1088/0960-1317/23/9/095004
15.
Lin
,
T.
,
Horn
,
G. P.
, and
Johnson
,
H. T.
,
2013
, “
Characterization of Silicon Photovoltaic Wafers Using Infrared Photoelasticity
,”
SEM Annual Conference on Experimental and Applied Mechanics
,
Lombard, IL
, June 3–5, Vol.
8
, pp.
303
308
.10.1007/978-3-319-00876-9_37
16.
Ganapati
,
V.
,
Schoenfelder
,
S.
,
Castellanos
,
S.
,
Oener
,
S.
,
Koepge
,
R.
,
Sampson
,
A.
,
Marcus
,
M. A.
,
Lai
,
B.
,
Morhenn
,
H.
,
Hahn
,
G.
,
Bagdahn
,
J.
, and
Buonassisi
,
T.
,
2010
, “
Infrared Birefringence Imaging of Residual Stress and Bulk Defects in Multicrystalline Silicon
,”
J. Appl. Phys.
,
108
(
6
), p.
063528
.10.1063/1.3468404
17.
Kaule
,
F.
,
Wang
,
W.
, and
Schoenfelder
,
S.
,
2014
, “
Modeling and Testing the Mechanical Strength of Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
120
(Part A), pp.
441
447
.10.1016/j.solmat.2013.06.048
18.
Ge
,
C.
,
Ming
,
N.
,
Tsukamoto
,
K.
,
Maiwa
,
K.
, and
Sunagawa
,
I.
,
1991
, “
Birefringence Images of Screw Dislocations Viewed End-On in Cubic Crystals
,”
J. Appl. Phys.
,
69
(
11
), p.
7556
.10.1063/1.347573
19.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1992
,
Theory of Dislocations
, 2nd ed.,
Krieger
,
Malabar, FL
.
20.
Groh
,
S.
, and
Zbib
,
H. M.
,
2009
, “
Advances in Discrete Dislocations Dynamics and Multiscale Modeling
,”
ASME J. Eng. Mater. Technol.
,
131
(
4
), p.
041209
.10.1115/1.3183783
21.
Fivel
,
M. C.
, and
Canova
,
G. R.
,
1999
, “
Developing Rigorous Boundary Conditions to Simulations of Discrete Dislocation Dynamics
,”
Model. Simul. Mater. Sci. Eng.
,
7
(
5
), pp.
753
768
.10.1088/0965-0393/7/5/308
22.
Cai
,
W.
,
Arsenlis
,
A.
,
Weinberger
,
C.
, and
Bulatov
,
V.
,
2006
, “
A Non-Singular Continuum Theory of Dislocations
,”
J. Mech. Phys. Solids
,
54
(
3
), pp.
561
587
.10.1016/j.jmps.2005.09.005
23.
Khanikar
,
P.
,
Kumar
,
A.
, and
Subramaniam
,
A.
,
2011
, “
Image Forces on Edge Dislocations: A Revisit of the Fundamental Concept With Special Regard to Nanocrystals
,”
Philos. Mag.
,
91
(
5
), pp.
730
750
.10.1080/14786435.2010.529089
24.
Weygand
,
D.
,
Friedman
,
L. H.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2002
, “
Aspects of Boundary-Value Problem Solutions With Three-Dimensional Dislocation Dynamics
,”
Model. Simul. Mater. Sci. Eng.
,
10
(
4
), pp.
437
468
.10.1088/0965-0393/10/4/306
25.
O'Day
,
M. P.
, and
Curtin
,
W. A.
,
2004
, “
A Superposition Framework for Discrete Dislocation Plasticity
,”
ASME J. Appl. Mech.
,
71
(
6
), p.
805
.10.1115/1.1794167
26.
Ahrenkiel
,
R. K.
,
Johnston
,
S. W.
,
Metzger
,
W. K.
, and
Dippo
,
P.
,
2007
, “
Relationship of Band-Edge Luminescence to Recombination Lifetime in Silicon Wafers
,”
J. Electron. Mater.
,
37
(
4
), pp.
396
402
.10.1007/s11664-007-0325-z
27.
Ostapenko
,
S.
,
Tarasov
,
I.
,
Kalejs
,
J. P.
,
Haessler
,
C.
, and
Reisner
,
E.-U.
,
2000
, “
Defect Monitoring Using Scanning Photoluminescence Spectroscopy in Multicrystalline Silicon Wafers
,”
Semicond. Sci. Technol.
,
15
(
8
), pp.
840
848
.10.1088/0268-1242/15/8/310
28.
Fukuzawa
,
M.
, and
Yamada
,
M.
,
2008
, “
Photoelastic Strain Measurement in GaP (100) Wafers Under External Stresses
,”
J. Mater. Sci. Mater. Electron.
,
19
(
S1
), pp.
83
86
.10.1007/s10854-008-9651-z
29.
Mariani
,
J. L.
,
Pichaud
,
B.
,
Minari
,
F.
, and
Martinuzzi
,
S.
,
1992
, “
Quantitative Determination of the Recombining Activities of 60 Deg and Screw Dislocations in Float Zone and Czochralski-Grown Silicon
,”
J. Appl. Phys.
,
71
(
3
), p.
1284
.10.1063/1.351245
30.
Muižnieks
,
A.
,
Raming
,
G.
,
Mühlbauer
,
A.
,
Virbulis
,
J.
,
Hanna
,
B.
, and
Ammon
,
W. V.
,
2001
, “
Stress-Induced Dislocation Generation in Large FZ- and CZ-Silicon Single Crystals—Numerical Model and Qualitative Considerations
,”
J. Cryst. Growth
,
230
(
1–2
), pp.
305
313
.10.1016/S0022-0248(01)01322-7
31.
Jaeger
,
J.
,
1945
, “
On Thermal Stresses in Circular Cylinders
,”
Philos. Mag.
,
36
(
257
), pp.
418
428
.
32.
Hirsch
,
P. B.
,
1980
, “
The Structure and Electrical Properties of Dislocations in Semiconductors
,”
J. Microsc.
,
118
(
1
), pp.
3
12
.10.1111/j.1365-2818.1980.tb00240.x
33.
Zhao
,
C. W. W.
,
Xing
,
Y. M. M.
,
Zhou
,
C. E. E.
, and
Bai
,
P. C. C.
,
2008
, “
Experimental Examination of Displacement and Strain Fields in an Edge Dislocation Core
,”
Acta Mater.
,
56
(
11
), pp.
2570
2575
.10.1016/j.actamat.2008.01.045
34.
Hartman
,
K.
,
Bertoni
,
M.
,
Serdy
,
J.
, and
Buonassisi
,
T.
,
2008
, “
Dislocation Density Reduction in Multicrystalline Silicon Solar Cell Material by High Temperature Annealing
,”
Appl. Phys. Lett.
,
93
(
12
), p.
122108
.10.1063/1.2990644
35.
Needleman
,
D. B.
,
Choi
,
H.
,
Powell
,
D. M.
, and
Buonassisi
,
T.
,
2013
, “
Rapid Dislocation-Density Mapping of As-Cut Crystalline Silicon Wafers
,”
Phys. Status Solidi RRL
,
7
(
12
), pp.
1041
1044
.10.1002/pssr.201308150
36.
Narasimhamurty
,
T. S.
,
1981
,
Photoelastic and Electro-Optic Properties of Crystals
,
Plenum
,
New York
.
37.
Biegelsen
,
D.
,
1974
, “
Photoelastic Tensor of Silicon and the Volume Dependence of the Average Gap
,”
Phys. Rev. Lett.
,
32
(
21
), pp.
1196
1199
.10.1103/PhysRevLett.32.1196
You do not currently have access to this content.