A finite inflation analysis of two circumferentially bonded hyperelastic circular flat membranes with uniform internal pressure is presented. The governing equations of equilibrium are obtained using the variational formulation. By making a suitable change in the field variables, the problem is formulated as a set of two coupled nonlinear two point boundary value problem (TPBVP) and is solved using the shooting method. Membranes of identical and dissimilar material properties are considered in the analysis. For dissimilar membranes, asymmetric inflation, and remarkably, deflation (after an initial phase of inflation) in one of the membranes in certain cases, has been observed. The effect of inflation pressure and material properties on the geometry of inflated configuration, state of stress, and the impending wrinkling condition of the membranes are also studied. This work has relevance to tunable inflated reflectors and lenses among other applications.

References

References
1.
Jenkins
,
C. H. M.
, ed.,
2001
, Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications (Progress in Astronautics and Aeronautics, Vol. 191), American Institute of Aeronautics and Astronautics Inc., Reston, VA.
2.
Jenkins
,
C. H. M.
,
2006
, Recent Advances in Gossamer Spacecraft, (Progress in Astronautics and Aeronautics, Vol. 212), American Institute of Aeronautics and Astronautics Inc., Reston, VA.
3.
O'Halloran
,
A.
,
O'Malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.10.1063/1.2981642
4.
Carpi
,
F.
,
Frediani
,
G.
,
Turco
,
S.
, and
De Rossi
,
D.
,
2011
, “
Bioinspired Tunable Lens With Muscle-Like Electroactive Elastomers
,”
Adv. Funct. Mater.
,
21
(
21
), pp.
4152
4158
.10.1002/adfm.201101253
5.
Blum
,
M.
,
Büeler
,
M.
,
Grätzel
,
C.
, and
Aschwanden
,
M.
,
2011
, “
Compact Optical Design Solutions Using Focus Tunable Lenses
,”
Optical Design and Engineering IV
, Vol. 8167, SPIE, Bellingham, WA, p. 81670W. 10.1117/12.897608
6.
Xiao
,
J.
,
Lu
,
C.
,
Li
,
M.
,
Jung
,
I.
,
Wu
,
J.
,
Huang
,
Y.
,
Hwang
,
K.-C.
, and
Rogers
,
J. A.
,
2013
, “
Mechanics of Tunable Hemispherical Electronic Eye Camera Systems That Combine Rigid Device Elements With Soft Elastomers
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061022
.10.1115/1.4023685
7.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
8.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. I. Fundamental Concepts
,”
Philos. Trans. R. Soc. London, Ser. A
,
240
(
822
), pp.
459
490
.10.1098/rsta.1948.0002
9.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. II. Some Uniqueness Theorems for Pure, Homogeneous Deformation
,”
Philos. Trans. R. Soc. London, Ser. A
,
240
(
822
), pp.
491
508
.10.1098/rsta.1948.0003
10.
Adkins
,
J. E.
, and
Rivlin
,
R. S.
,
1952
, “
Large Elastic Deformations of Isotropic Materials. IX. The Deformation of Thin Shells
,”
Philos. Trans. R. Soc. London. Ser. A
,
244
(
888
), pp.
505
531
.10.1098/rsta.1952.0013
11.
Wong
,
F. S.
, and
Shield
,
R. T.
,
1969
, “
Large Plane Deformations of Thin Elastic Sheets of Neo-Hookean Material
,”
ZAMP
,
20
(
2
), pp.
176
199
.10.1007/BF01595559
12.
Green
,
A. E.
, and
Adkins
,
J. E.
,
1970
,
Large Elastic Deformation
,
Oxford University
,
London
.
13.
Naghdi
,
P. M.
,
1972
, “
The Theory of Shells and Plates
,”
S. Flügge's Handbuch der Physik
, Vol.
VIa/2
,
C.
Truesdell
, ed.,
Springer
,
Berlin
.
14.
Naghdi
,
P. M.
, and
Tang
,
P. Y.
,
1977
, “
Large Deformation Possible in Every Isotropic Elastic Membrane
,”
Philos. Trans. R. Soc. London. Ser. A
,
287
(
1341
), pp.
145
187
.10.1098/rsta.1977.0143
15.
Green
,
A. E.
, and
Zerna
,
W.
,
1992
,
Theoretical Elasticity
,
Dover
,
New York
.
16.
Treloar
,
L.
,
1975
, “
Oxford Classic Texts in the Physical Sciences
,”
The Physics of Rubber Elasticity
, Oxford University Press, Oxford, UK.
17.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis-Horwood
,
Chichester, UK
.
18.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.10.5254/1.3538357
19.
Hart-Smith
,
L. J.
, and
Crisp
,
J. D. C.
,
1967
, “
Large Elastic Deformations of Thin Rubber Membranes
,”
Int. J. Eng. Sci.
,
5
(1), pp.
1
24
.10.1016/0020-7225(67)90051-1
20.
Wineman
,
A.
,
Wilson
,
D.
, and
Melvin
,
J. W.
,
1979
, “
Material Identification of Soft Tissue Using Membrane Inflation
,”
J. Biomech.
,
12
(
11
), pp.
841
850
.10.1016/0021-9290(79)90169-6
21.
Dickey
,
R. W.
,
1967
, “
The Plane Circular Elastic Surface Under Normal Pressure
,”
Arch. Ration. Mech. Anal.
,
26
(3), pp.
219
236
.10.1007/BF00281971
22.
Feng
,
W. W.
,
1976
, “
Inflation of a Bonded Non-Linear Viscoelastic Toroidal Membrane
,”
Int. J. Non Linear Mech.
,
11
(
3
), pp.
183
190
.10.1016/0020-7462(76)90029-9
23.
Kelkar
,
A.
,
Elber
,
W.
, and
Raju
,
I. S.
,
1985
, “
Large Deflections of Circular Isotropic Membranes Subjected to Arbitrary Axisymmetric Loading
,”
Comput. Struct.
,
21
(
3
), pp.
413
421
.10.1016/0045-7949(85)90118-X
24.
Khayat
,
R. E.
,
Derdorri
,
A.
, and
Garcia-Rjon
,
A.
,
1992
, “
Inflation of an Elastic Cylindrical Membrane: Non-Linear Deformation and Instability
,”
Int. J. Solids Struct.
,
29
(
1
), pp.
69
87
.10.1016/0020-7683(92)90096-C
25.
Pamplona
,
D. C.
,
Gonçalves
,
P.
, and
Lopes
,
S. R. X.
,
2006
, “
Finite Deformations of Cylindrical Membrane Under Internal Pressure
,”
Int. J. Mech. Sci.
,
48
(
6
), pp.
683
696
.10.1016/j.ijmecsci.2005.12.007
26.
Pujara
,
P.
, and
Lardner
,
T. J.
,
1978
, “
Deformations of Elastic Membranes—Effect of Different Constitutive Relations
,”
ZAMP
,
29
(2), pp.
315
327
.10.1007/BF01601526
27.
Selvadurai
,
A. P. S.
,
2006
, “
Deflections of a Rubber Membrane
,”
J. Mech. Phys. Solids
,
54
(
6
), pp.
1093
1119
.10.1016/j.jmps.2006.01.001
28.
Yang
,
W. H.
, and
Feng
,
W. W.
,
1970
, “
On Axisymmetrical Deformations of Nonlinear Membranes
,”
ASME J. Appl. Mech.
,
37
(
4
), pp.
1002
1011
.10.1115/1.3408651
29.
Foster
,
H. O.
,
1967
, “
Very Large Deformations of Axially Symmetrical Membranes Made of Neo-Hookean Materials
,”
Int. J. Eng. Sci.
,
5
(
1
), pp.
95
117
.10.1016/0020-7225(67)90056-0
30.
Patil
,
A.
, and
DasGupta
,
A.
,
2013
, “
Finite Inflation of an Initially Stretched Hyperelastic Circular Membrane
,”
Eur. J. Mech. A/Solids
,
41
, pp.
28
36
.10.1016/j.euromechsol.2013.02.007
31.
Tamadapu
,
G.
, and
DasGupta
,
A.
,
2013
, “
Finite Inflation Analysis of a Hyperelastic Toroidal Membrane of Initially Circular Cross-Section
,”
Int. J. Non Linear Mech.
,
49
, pp.
31
39
.10.1016/j.ijnonlinmec.2012.09.008
32.
Tamadapu
,
G.
, and
DasGupta
,
A.
,
2014
, “
Effect of Curvature and Anisotropy on the Finite Inflation of a Hyperelastic Toroidal Membrane
,”
Eur. J. Mech. A/Solids
,
46
, pp.
106
114
.10.1016/j.euromechsol.2014.02.006
33.
Shield
,
R. T.
,
1971
, “
On the Stability of Finitely Deformed Elastic Membranes
,”
ZAMP
,
22
(6), pp.
1016
1028
.10.1007/BF01590870
34.
Benedict
,
R.
,
Wineman
,
A.
, and
Yang
,
W. H.
,
1979
, “
The Determination of Limiting Pressure in Simultaneous Elongation and Inflation of Nonlinear Elastic Tubes
,”
Int. J. Solids Struct.
,
15
(
3
), pp.
241
249
.10.1016/0020-7683(79)90034-9
35.
Ogden
,
R. W.
,
1987
, “
On the Stability of Asymmetric Deformations of a Symmetrically-Tensioned Elastic Sheet
,”
Int. J. Eng. Sci.
,
25
(
10
), pp.
1305
1314
.10.1016/0020-7225(87)90048-6
36.
Sohail
,
T.
, and
Nadler
,
B.
,
2011
, “
On the Contact of an Inflated Spherical Membrane-Fluid Structure With a Rigid Conical Indenter
,”
Acta Mech.
,
218
(3–4), pp.
225
235
.10.1007/s00707-010-0418-2
37.
Tamadapu
,
G.
, and
DasGupta
,
A.
,
2014
, “
Finite Inflation of a Hyperelastic Toroidal Membrane Over a Cylindrical Rim
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
430
439
.10.1016/j.ijsolstr.2013.10.016
38.
Kumar
,
N.
, and
DasGupta
,
A.
,
2013
, “
On the Contact Problem of an Inflated Spherical Hyperelastic Membrane
,”
Int. J. Non Linear Mech.
,
57
, pp.
130
139
.10.1016/j.ijnonlinmec.2013.06.015
39.
Gonçalves
,
P. B.
,
Soares
,
R. M.
, and
Pamplona
,
D.
,
2009
, “
Nonlinear Vibrations of a Radially Stretched Circular Hyperelastic Membrane
,”
J. Sound Vib.
,
327
(
1–2
), pp.
231
248
.10.1016/j.jsv.2009.06.023
40.
Soares
,
R. M.
, and
Gonçalves
,
P. B.
,
2012
, “
Nonlinear Vibrations and Instabilities of a Stretched Hyperelastic Annular Membrane
,”
Int. J. Solids Struct.
,
49
(
3–4
), pp.
514
526
.10.1016/j.ijsolstr.2011.10.019
41.
Chaudhuri
,
A.
, and
DasGupta
,
A.
,
2014
, “
On the Static and Dynamic Analysis of Inflated Hyperelastic Circular Membranes
,”
J. Mech. Phys. Solids
,
64
, pp.
302
315
.10.1016/j.jmps.2013.11.013
42.
Tamadapu
,
G.
, and
DasGupta
,
A.
,
2012
, “
In-Plane Surface Modes of an Elastic Toroidal Membrane
,”
Int. J. Eng. Sci.
,
60
, pp.
25
36
.10.1016/j.ijengsci.2012.05.005
43.
DasGupta
,
A.
, and
Tamadapu
,
G.
,
2013
, “
In-Plane Dynamics of Membranes Having Constant Curvature
,”
Eur. J. Mech. A/Solids
,
39
, pp.
280
290
.10.1016/j.euromechsol.2012.12.010
44.
Pipkin
,
A. C.
,
1986
, “
The Relaxed Energy Density for Isotropic Elastic Membranes
,”
IMA J. Appl. Math.
,
36
(
1
), pp.
85
99
.10.1093/imamat/36.1.85
45.
Steigmann
,
D. J.
,
1990
, “
Tension-Field Theory
,”
Proc. R. Soc. London, Ser. A
,
429
(
1876
), pp.
141
173
.10.1098/rspa.1990.0055
46.
Li
,
X.
, and
Steigmann
,
D. J.
,
1995
, “
Point Loads on a Hemispherical Elastic Membrane
,”
Int. J. Non Linear Mech.
,
30
(
4
), pp.
569
581
.10.1016/0020-7462(95)00019-K
47.
Dreyer
,
W.
,
Müller
,
I.
, and
Strehlow
,
P.
,
1982
, “
A Study of Equilibria of Interconnected Balloons
,”
Q. J. Mech. Appl. Math.
,
35
(
3
), pp.
419
440
.10.1093/qjmam/35.3.419
48.
Merritt
,
D. R.
, and
Weinhaus
,
F.
,
1978
, “
The Pressure Curve for a Rubber Balloon
,”
Am. J. Phys.
,
46
(
10
), pp.
976
977
.10.1119/1.11486
49.
Goriely
,
A.
,
Destrade
,
M.
, and
Ben Amar
,
M.
,
2006
, “
Instabilities in Elastomers and in Soft Tissues
,”
Q. J. Mech. Appl. Math.
,
59
(
4
), pp.
615
630
.10.1093/qjmam/hbl017
50.
Tamadapu
,
G.
,
Dhavale
,
N. N.
, and
DasGupta
,
A.
,
2013
, “
Geometrical Feature of the Scaling Behavior of the Limit–Point Pressure of Inflated Hyperelastic Membranes
,”
Phys. Rev. E
,
88
(
5
), p.
053201
.10.1103/PhysRevE.88.053201
51.
Spain
,
B.
,
1965
,
Tensor Calculus
,
Oliver and Boyd
,
London, UK
.
You do not currently have access to this content.