A new model of high-intensity focused ultrasound generation by radiation from a composite nanothinfilm made of carbon nanotubes (CNTs) and elastomeric polymer is presented in this paper. The composite nanothinfilm is deposited to the surface of a concave lens and the performance of focused ultrasound generated by an incident pulsed laser onto the lens is analyzed. The analysis and results are verified by comparing with published experimental data and very good agreement is recorded. The opto-acoustic pressure on the symmetric axis and the lateral focal plane are investigated analytically and the result indicates that excellent acoustic performance is found to be present in the vicinity of the focus region. The temporal performance of the focused lens is also investigated both at the focal point and the prefocal zone and very good agreement comparing with experiment is obtained. Conclusively, it is demonstrated theoretically that there exists an optimal input frequency for a pulsed laser at which the performance of the focused lens can be tremendously enhanced. In general, this new analytical model provides new guidelines in the design of high-intensity ultrasound lens, hence opening up promising applications to medical ultrasonography treatment.

References

References
1.
Leslie
,
T. A.
, and
Kennedy
,
J. E.
,
2007
, “
High Intensity Focused Ultrasound in the Treatment of Abdominal and Gynaecological Diseases
,”
Int. J. Hyperther.
,
23
(
2
), pp.
173
182
.10.1080/02656730601150514
2.
Coussios
,
C. C.
, and
Roy
,
R. A.
,
2008
, “
Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
395
420
.10.1146/annurev.fluid.40.111406.102116
3.
Roberts
,
W. W.
,
Hall
,
T. L.
,
Ives
,
K.
,
Wolf
,
J. S.
,
Fowlkes
,
J. B.
, and
Cain
,
C. A.
,
2006
, “
Pulsed Cavitational Ultrasound: A Noninvasive Technology for Controlled Tissue Ablation (Histotripsy) in the Rabbit Kidney
,”
J. Urol.
,
175
(
2
), pp.
734
738
.10.1016/S0022-5347(05)00141-2
4.
Kinoshita
,
M.
, and
Hynynen
,
K.
,
2006
, “
Mechanism of Porphyrin-Induced Sonodynamic Effect: Possible Role of Hyperthermia
,”
Radiat. Res.
,
165
(
3
), pp.
299
306
.10.1667/RR3510.1
5.
Goldenstedt
,
C.
,
Birer
,
A.
,
Cathignol
,
D.
, and
Lafon
,
C.
,
2009
, “
Blood Clot Disruption In Vitro Using Shockwaves Delivered by an Extracorporeal Generator After Pre-Exposure to Lytic Agent
,”
Ultrasound Med. Biol.
,
35
(
6
), pp.
985
990
.10.1016/j.ultrasmedbio.2008.11.016
6.
Hynynen
,
K.
,
McDannold
,
N.
,
Sheikov
,
N. A.
,
Jolesz
,
F. A.
, and
Vykhodtseva
,
N.
,
2005
, “
Local and Reversible Blood-Brain Barrier Disruption by Noninvasive Focused Ultrasound at Frequencies Suitable for Trans-Skull Sonications
,”
Neuroimage
,
24
(
1
), pp.
12
20
.10.1016/j.neuroimage.2004.06.046
7.
Baac
,
H. W.
,
Ok
,
J. G.
,
Maxwell
,
A.
,
Lee
,
K. T.
,
Chen
,
Y. C.
,
Hart
,
A. J.
,
Xu
,
Z.
,
Yoon
,
E.
, and
Guo
,
L. J.
,
2012
, “
Carbon-Nanotube Optoacoustic Lens for Focused Ultrasound Generation and High-Precision Targeted Therapy
,”
Sci. Rep.
,
2
, p.
989
.10.1038/srep00989
8.
Zhou
,
Y. F.
,
2011
, “
High Intensity Focused Ultrasound in Clinical Tumor Ablation
,”
World J. Clin. Oncol.
,
2
(
1
), pp.
8
27
.10.5306/wjco.v2.i1.8
9.
Spadoni
,
A.
, and
Daraio
,
C.
,
2010
, “
Generation and Control of Sound Bullets With a Nonlinear Acoustic Lens
,”
Proc. Natl. Acad Sci. U.S.A.
,
107
(
16
), pp.
7230
7234
.10.1073/pnas.1001514107
10.
Yang
,
H.
,
Kim
,
J. S.
,
Ashkenazi
,
S.
,
O'Donnell
,
M.
, and
Guo
,
L. J.
,
2006
, “
Optical Generation of High Frequency Ultrasound Using Two-Dimensional Gold Nanostructure
,”
Appl. Phys. Lett.
,
89
(
9
), p.
093901
.10.1063/1.2344929
11.
Mizuno
,
K.
,
Ishii
,
J.
,
Kishida
,
H.
,
Hayamizu
,
Y.
,
Yasuda
,
S.
,
Futaba
,
D. N.
,
Yumura
,
M.
, and
Hata
,
K.
,
2009
, “
A Black Body Absorber From Vertically Aligned Single-Walled Carbon Nanotubes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
15
), pp.
6044
6047
.10.1073/pnas.0900155106
12.
de los Arcos
,
T.
,
Oelhafen
,
P.
, and
Mathys
,
D.
,
2007
, “
Optical Characterization of Alignment and Effective Refractive Index in Carbon Nanotube Films
,”
Nanotechnology
,
18
(
26
), p.
265706
.10.1088/0957-4484/18/26/265706
13.
Wu
,
X. H.
,
Pan
,
L. S.
,
Li
,
H.
,
Fan
,
X. J.
,
Ng
,
T. Y.
,
Xu
,
D.
, and
Zhang
,
C. X.
,
2003
, “
Optical Properties of Aligned Carbon Nanotubes
,”
Phys. Rev. B
,
68
(
19
), p.
193401
.10.1103/PhysRevB.68.193401
14.
Yang
,
Z. P.
,
Ci
,
L. J.
,
Bur
,
J. A.
,
Lin
,
S. Y.
, and
Ajayan
,
P. M.
,
2008
, “
Experimental Observation of an Extremely Dark Material Made by a Low-Density Nanotube Array
,”
Nano Lett.
,
8
(
2
), pp.
446
451
.10.1021/nl072369t
15.
Wang
,
X. J.
,
Flicker
,
J. D.
,
Lee
,
B. J.
,
Ready
,
W. J.
, and
Zhang
,
Z. M.
,
2009
, “
Visible and Near-Infrared Radiative Properties of Vertically Aligned Multi-Walled Carbon Nanotubes
,”
Nanotechnology
,
20
(
21
), p.
215704
.10.1088/0957-4484/20/21/215704
16.
Buma
,
T.
,
Spisar
,
M.
, and
O'Donnell
,
M.
,
2001
, “
High-Frequency Ultrasound Array Element Using Thermoelastic Expansion in an Elastomeric Film
,”
Appl. Phys. Lett.
,
79
(
4
), pp.
548
550
.10.1063/1.1388027
17.
Parker
,
J. G.
,
1973
, “
Optical-Absorption in Glass—Investigation Using an Acoustic Technique
,”
Appl. Opt.
,
12
(
12
), pp.
2974
2977
.10.1364/AO.12.002974
18.
McClelland
,
J. F.
, and
Kniseley
,
R. N.
,
1976
, “
Photoacoustic Spectroscopy With Condensed Samples
,”
Appl. Opt.
,
15
(
11
), pp.
2658
2663
.10.1364/AO.15.002658
19.
Rosencwaig
,
A.
, and
Gersho
,
A.
,
1976
, “
Theory of the Photoacoustic Effect With Solids
,”
J. Appl. Phys.
,
47
(
1
), pp.
64
69
.10.1063/1.322296
20.
Aamodt
,
L. C.
,
Murphy
,
J. C.
, and
Parker
,
J. G.
,
1977
, “
Size Considerations in the Design of Cells for Photoacoustic Spectroscopy
,”
J. Appl. Phys.
,
48
(
3
), pp.
927
933
.10.1063/1.323710
21.
Kopylova
,
D.
,
Pelivanov
,
I.
,
Podymova
,
N.
, and
Karabutov
,
A.
,
2008
, “
Thickness Measurement for Submicron Metallic Coatings on a Transparent Substrate by Laser Optoacoustic Technique
,”
Acoust. Phys.
,
54
(
6
), pp.
783
790
.10.1134/S1063771008060067
22.
Diebold
,
G. J.
,
Sun
,
T.
, and
Khan
,
M. I.
,
1991
, “
Photoacoustic Monopole Radiation in 1-Dimension, 2-Dimension, and 3-Dimension
,”
Phys. Rev. Lett.
,
67
(
24
), pp.
3384
3387
.10.1103/PhysRevLett.67.3384
23.
Vesterinen
,
V.
,
Niskanen
,
A. O.
,
Hassel
,
J.
, and
Helisto
,
P.
,
2010
, “
Fundamental Efficiency of Nanothermophones: Modeling and Experiments
,”
Nano Lett.
,
10
(
12
), pp.
5020
5024
.10.1021/nl1031869
24.
Hsieh
,
K. C.
,
Tsai
,
T. Y.
,
Wan
,
D. H.
,
Chen
,
H. L.
, and
Tai
,
N. H.
,
2010
, “
Using Patterned Carbon Nanotube Films With Optical Anisotropy to Tune the Diffracted Color From Flexible Substrates
,”
Carbon
,
48
(
5
), pp.
1410
1417
.10.1016/j.carbon.2009.12.033
25.
Hu
,
H. P.
,
Wang
,
Z. D.
,
Wu
,
H.
, and
Wang
,
Y. D.
,
2012
, “
Analysis of Spherical Thermo-Acoustic Radiation in Gas
,”
AIP Adv.
,
2
(
3
), p.
032106
.10.1063/1.4738497
26.
Oneil
,
H. T.
,
1949
, “
Theory of Focusing Radiators
,”
J. Acoust. Soc. Am.
,
21
(
5
), pp.
516
526
.10.1121/1.1906542
27.
Lide
,
D. R.
,
2001
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 2001–2002
,
CRC Press
,
Boca Raton, FL
.
28.
Mark
,
J. E.
,
1999
,
Polymer Data Handbook
,
Oxford University Press, Inc.
,
New York
.
29.
Wolfram
, Mathematical version 6.0.3.0, Wolfram Research, Champaign, IL.
30.
Tang
,
K. T.
,
2007
,
Mathematical Methods for Engineers and Scientists 3: Fourier Analysis, Partial Differential Equations and Variational Methods
,
Springer
,
New York
.
You do not currently have access to this content.