We investigated the temperature and strain rate dependent fracture strength of defective graphene using molecular dynamics and an atomistic model. This atomistic model was developed by introducing the influence of strain rate and vacancy defects into the kinetics of graphene. We also proposed a novel continuum based fracture mechanics framework to characterize the temperature and strain rate dependent strength of defective sheets. The strength of graphene highly depends on vacancy concentration, temperature, and strain rate. Molecular dynamics simulations, which are generally performed under high strain rates, exceedingly overpredict the strength of graphene at elevated temperatures. Graphene sheets with random vacancies demonstrate a singular stress field as in continuum fracture mechanics. Molecular dynamics simulations on the crack propagation reveal that the energy dissipation rate indicates proportionality with the strength. These findings provide a remarkable insight into the fracture strength of defective graphene, which is critical in designing experimental and instrumental applications.

References

References
1.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
2.
Singh
,
V.
,
Irfan
,
B.
,
Subramanian
,
G.
,
Solanki
,
H. S.
,
Sengupta
,
S.
,
Dubey
,
S.
,
Kumar
,
A.
,
Ramakrishnan
,
S.
, and
Deshmukh
,
M. M.
,
2012
, “
Coupling Between Quantum Hall State and Electromechanics in Suspended Graphene Resonator
,”
Appl. Phys. Lett.
,
100
(
23
), p.
233103
.10.1063/1.3703763
3.
Klimov
,
N. N.
,
Jung
,
S.
,
Zhu
,
S. Z.
,
Li
,
T.
,
Wright
,
C. A.
,
Solares
,
S. D.
,
Newell
,
D. B.
,
Zhitenev
,
N. B.
, and
Stroscio
,
J. A.
,
2012
, “
Electromechanical Properties of Graphene Drumheads
,”
Science
,
336
(
6088
), pp.
1557
1561
.10.1126/science.1220335
4.
Espinosa-Ortega
,
T.
,
Luk'yanchuk
,
I. A.
, and
Rubo
,
Y. G.
,
2013
, “
Magnetic Properties of Graphene Quantum Dots
,”
Phys. Rev. B
,
87
(
20
), p.
205434
.10.1103/PhysRevB.87.205434
5.
Chen
,
C.
,
Rosenblatt
,
S.
,
Bolotin
,
K. I.
,
Kalb
,
W.
,
Kim
,
P.
,
Kymissis
,
I.
,
Stormer
,
H. L.
,
Heinz
,
T. F.
, and
Hone
,
J.
,
2009
, “
Performance of Monolayer Graphene Nanomechanical Resonators With Electrical Readout
,”
Nat. Nanotechnol.
,
4
(
12
), pp.
861
867
.10.1038/nnano.2009.267
6.
Chen
,
C. Y.
,
Lee
,
S.
,
Deshpande
,
V. V.
,
Lee
,
G. H.
,
Lekas
,
M.
,
Shepard
,
K.
, and
Hone
,
J.
,
2013
, “
Graphene Mechanical Oscillators With Tunable Frequency
,”
Nat. Nanotechnol.
,
8
(
12
), pp.
923
927
.10.1038/nnano.2013.232
7.
Novoselov
,
K. S.
,
Fal'ko
,
V. I.
,
Colombo
,
L.
,
Gellert
,
P. R.
,
Schwab
,
M. G.
, and
Kim
,
K.
,
2012
, “
A Roadmap for Graphene
,”
Nature
,
490
(
7419
), pp.
192
200
.10.1038/nature11458
8.
Banhart
,
F.
,
Kotakoski
,
J.
, and
Krasheninnikov
,
A. V.
,
2011
, “
Structural Defects in Graphene
,”
ACS Nano
,
5
(
1
), pp.
26
41
.10.1021/nn102598m
9.
Gao
,
L. B.
,
Ni
,
G. X.
,
Liu
,
Y. P.
,
Liu
,
B.
,
Neto
,
A. H. C.
, and
Loh
,
K. P.
,
2014
, “
Face-To-Face Transfer of Wafer-Scale Graphene Films
,”
Nature
,
505
(
7482
), pp.
190
194
.10.1038/nature12763
10.
Zandiatashbar
,
A.
,
Lee
,
G. H.
,
An
,
S. J.
,
Lee
,
S.
,
Mathew
,
N.
,
Terrones
,
M.
,
Hayashi
,
T.
,
Picu
,
C. R.
,
Hone
,
J.
, and
Koratkar
,
N.
,
2014
, “
Effect of Defects on the Intrinsic Strength and Stiffness of Graphene
,”
Nat. Commun.
,
5
, p.
3186
.10.1038/ncomms4186
11.
Kotakoski
,
J.
,
Krasheninnikov
,
A. V.
,
Kaiser
,
U.
, and
Meyer
,
J. C.
,
2011
, “
From Point Defects in Graphene to Two-Dimensional Amorphous Carbon
,”
Phys. Rev. Lett.
,
106
(
10
), p.
105055
.10.1103/PhysRevLett.106.105505
12.
Datta
,
D.
,
Li
,
J. W.
, and
Shenoy
,
V. B.
,
2014
, “
Defective Graphene as a High-Capacity Anode Material for Na- and Ca-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
3
), pp.
1788
1795
.10.1021/am404788e
13.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H. H.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2010
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
.10.1002/smll.200901480
14.
Zhu
,
S.
, and
Li
,
T.
,
2014
, “
Wrinkling Instability of Graphene on Substrate-Supported Nanoparticles
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061008
.10.1115/1.4026638
15.
Carpenter
,
C.
,
Maroudas
,
D.
, and
Ramasubramaniam
,
A.
,
2013
, “
Mechanical Properties of Irradiated Single-Layer Graphene
,”
Appl. Phys. Lett.
,
103
(
1
), p.
013102
.10.1063/1.4813010
16.
Xu
,
L. Q.
,
Wei
,
N.
, and
Zheng
,
Y. P.
,
2013
, “
Mechanical Properties of Highly Defective Graphene: From Brittle Rupture to Ductile Fracture
,”
Nanotechnology
,
24
(
50
), p.
505703
.10.1088/0957-4484/24/50/505703
17.
Zhao
,
H.
, and
Aluru
,
N. R.
,
2010
, “
Temperature and Strain-Rate Dependent Fracture Strength of Graphene
,”
J. Appl. Phys.
,
108
(
6
), p.
064321
.10.1063/1.3488620
18.
Jhon
,
Y. I.
,
Jhon
,
Y. M.
,
Yeom
,
G. Y.
, and
Jhon
,
M. S.
,
2014
, “
Orientation Dependence of the Fracture Behavior of Graphene
,”
Carbon
,
66
, pp.
619
628
.10.1016/j.carbon.2013.09.051
19.
Cao
,
A. J.
, and
Qu
,
J. M.
,
2013
, “
Atomistic Simulation Study of Brittle Failure in Nanocrystalline Graphene Under Uniaxial Tension
,”
Appl. Phys. Lett.
,
102
(
7
), p.
071902
.10.1063/1.4793088
20.
Kim
,
K.
,
Artyukhov
,
V. I.
,
Regan
,
W.
,
Liu
,
Y. Y.
,
Crommie
,
M. F.
,
Yakobson
,
B. I.
, and
Zettl
,
A.
,
2012
, “
Ripping Graphene: Preferred Directions
,”
Nano Lett.
,
12
(
1
), pp.
293
297
.10.1021/nl203547z
21.
Zhang
,
B.
,
Mei
,
L.
, and
Xiao
,
H. F.
,
2012
, “
Nanofracture in Graphene Under Complex Mechanical Stresses
,”
Appl. Phys. Lett.
,
101
(
12
), p.
121915
.10.1063/1.4754115
22.
Yi
,
L. J.
,
Yin
,
Z. N.
,
Zhang
,
Y. Y.
, and
Chang
,
T. C.
,
2013
, “
A Theoretical Evaluation of the Temperature and Strain-Rate Dependent Fracture Strength of Tilt Grain Boundaries in Graphene
,”
Carbon
,
51
, pp.
373
380
.10.1016/j.carbon.2012.08.069
23.
Dewapriya
,
M. A. N.
,
Rajapakse
,
R. K. N. D.
, and
Phani
,
A. S.
,
2014
, “
Atomistic and Continuum Modelling of Temperature-Dependent Fracture of Graphene
,”
Int. J. Fract.
,
187
(
2
), pp.
199
212
.10.1007/s10704-014-9931-y
24.
Dewapriya
,
M. A. N.
,
Phani
,
A. S.
, and
Rajapakse
,
R. K. N. D.
,
2013
, “
Influence of Temperature and Free Edges on the Mechanical Properties of Graphene
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
6
), p.
065017
.10.1088/0965-0393/21/6/065017
25.
Rokni
,
H.
, and
Lu
,
W.
,
2013
, “
Surface and Thermal Effects on the Pull-In Behavior of Doubly-Clamped Graphene Nanoribbons Under Electrostatic and Casimir Loads
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061014
.10.1115/1.4023683
26.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comp. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
27.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
28.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
.10.1103/PhysRevB.42.9458
29.
Shenderova
,
O. A.
,
Brenner
,
D. W.
,
Omeltchenko
,
A.
,
Su
,
X.
, and
Yang
,
L. H.
,
2000
, “
Atomistic Modeling of the Fracture of Polycrystalline Diamond
,”
Phys. Rev. B
,
61
(
6
), pp.
3877
3888
.10.1103/PhysRevB.61.3877
30.
Dewapriya
,
M. A. N.
,
2012
, “
Molecular Dynamics Study of Effects of Geometric Defects on the Mechanical Properties of Graphene
,” M.A.Sc. thesis, The University of British Columbia, Vancouver, Canada.
31.
Nose
,
S.
,
1984
, “
A Molecular-Dynamics Method for Simulations in the Canonical Ensemble
,”
Mol. Phys.
,
52
(
2
), pp.
255
268
.10.1080/00268978400101201
32.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics–Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.10.1103/PhysRevA.31.1695
33.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics Modell.
,
14
(
1
), pp.
33
38
.10.1016/0263-7855(96)00018-5
34.
Tsai
,
D. H.
,
1979
, “
The Virial Theorem and Stress Calculation in Molecular Dynamics
,”
J. Chem. Phys.
,
70
(
3
), pp.
1375
1382
.10.1063/1.437577
35.
Bailey
,
J.
,
1939
, “
An Attempt to Correlate Some Tensile Strength Measurements on Glass: III
,”
Glass Ind.
,
20
, pp.
95
99
.
36.
Freed
,
A. D.
, and
Leonov
,
A. I.
,
2002
, “
The Bailey Criterion: Statistical Derivation and Applications to Interpretations of Durability Tests and Chemical Kinetics
,”
Z. Angew. Math. Phys.
,
53
(
1
), pp.
160
166
.10.1007/s00033-002-8148-5
37.
Arrhenius
,
S.
,
1889
, “
On the Reaction Rate of the Inversion of the Non-Refined Sugar Upon Souring
,”
Z. Phys. Chem.
,
4
, pp.
226
248
.
38.
Kuo
,
T. L.
,
Garcia-Manyes
,
S.
,
Li
,
J. Y.
,
Barel
,
I.
,
Lu
,
H.
,
Berne
,
B. J.
,
Urbakh
,
M.
,
Klafter
,
J.
, and
Fernandez
,
J. M.
,
2010
, “
Probing Static Disorder in Arrhenius Kinetics by Single-Molecule Force Spectroscopy
,”
PNAS
,
107
(
25
), pp.
11336
11340
.10.1073/pnas.1006517107
39.
Anderson
,
T. L.
,
1991
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
, Boca Raton, FL, Chap. II.
You do not currently have access to this content.