In the present work, we intend to demonstrate how to do topology optimization in an explicit and geometrical way. To this end, a new computational framework for structural topology optimization based on the concept of moving morphable components is proposed. Compared with the traditional pixel or node point-based solution framework, the proposed solution paradigm can incorporate more geometry and mechanical information into topology optimization directly and therefore render the solution process more flexibility. It also has the great potential to reduce the computational burden associated with topology optimization substantially. Some representative examples are presented to illustrate the effectiveness of the proposed approach.

References

1.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.10.1016/0045-7825(88)90086-2
2.
Altair HyperWorks,
2012
, OptiStruct-12.0 User's Guide, Altair Engineering, Troy, MI.
3.
DS Simulia, 2011, “Topology and Shape
Optimization With Abaqus,” Dassault Systèmes, Waltham, MA.
4.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.10.1115/1.1388075
5.
Bendsoe
,
M. P.
,
Lund
,
E.
,
Olhoff
,
N.
, and
Sigmund
,
O.
,
2005
, “
Topology Optimization-Broadening the Areas of Application
,”
Control Cybern.
,
34
(
1
), pp.
7
35
.
6.
Guo
,
X.
, and
Cheng
,
G. D.
,
2010
, “
Recent Development in Structural Design and Optimization
,”
Acta Mech. Sin.
,
26
(
6
), pp.
807
823
.10.1007/s10409-010-0395-7
7.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.10.1007/s00158-013-0978-6
8.
Bendsoe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.10.1007/BF01650949
9.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometry, and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3)
, pp.
309
336
.10.1016/0045-7825(91)90046-9
10.
Mlejnek
,
H. P.
,
1992
, “
Some Aspects of the Genesis of Structures
,”
Struct. Optim.
,
5
(
1–2
), pp.
64
69
.10.1007/BF01744697
11.
Bendsoe
,
M. P.
,
Guedes
,
J. M.
,
Haber
,
R. B.
,
Pedersen
,
P.
, and
Taylor
,
J. E.
,
1994
, “
An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
930
937
.10.1115/1.2901581
12.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.10.1016/S0045-7825(02)00559-5
13.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.10.1016/j.jcp.2003.09.032
14.
Cheng
,
G. D.
, and
Jiang
,
Z.
,
1992
, “
Study on Topology Optimization With Stress Constraints
,”
Eng. Optim.
,
20
(
2
), pp.
129
148
.10.1080/03052159208941276
15.
Cheng
,
G. D.
, and
Guo
,
X.
,
1997
, “
Epsilon-Relaxed Approach in Structural Topology Optimization
,”
Struct. Optim.
,
13
(
4
), pp.
258
266
.
16.
Eftekharian
,
A. A.
, and
Ilies
,
H. T.
,
2009
, “
Distance Functions and Skeletal Representations of Rigid and Non-Rigid Planar Shapes
,”
Comput. Aided Des.
,
41
(
12
), pp.
856
876
.10.1016/j.cad.2009.05.006
17.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Explicit Feature Control in Structural Topology Optimization Via Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
354
378
.10.1016/j.cma.2014.01.010
18.
Wei
,
P.
,
Wang
,
M. Y.
, and
Xing
,
X. H.
,
2010
, “
A Study on X-FEM in Continuum Structural Optimization Using a Level Set Model
,”
Comput. Aided Des.
,
42
(
8
), pp.
708
719
.10.1016/j.cad.2009.12.001
19.
Sigmund
,
O.
,
2009
, “
Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Sina.
,
25
(
2
), pp.
227
239
.10.1007/s10409-009-0240-z
20.
Chen
,
S. K.
,
Chen
,
W.
, and
Lee
,
S. H.
,
2010
, “
Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties
,”
Struct. Multidiscip. Optim.
,
41
(4), pp.
507
524
.10.1007/s00158-009-0449-2
21.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhang
,
L.
,
2013
, “
Robust Topology Optimization Considering Boundary Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
356
368
.10.1016/j.cma.2012.09.005
22.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.10.1002/nme.1620240207
23.
Fleury
,
C.
,
2007
, “
Structural Optimization Methods for Large Scale Problems: Status and Limitations
,”
ASME
Paper No. DETC2007-34326.10.1115/DETC2007-34326
You do not currently have access to this content.