In this paper, we study the existence and uniqueness of interfacial waves in account of surface elasticity at the interface. A sufficient condition for the existence and uniqueness of a subsonic interfacial wave between two elastic half spaces is obtained for general anisotropic materials. Further, we explicitly calculate the dispersion relations of interfacial waves for interfaces between two solids and solid and fluid, and parametrically study the effects of surface elasticity on the dispersion relations. We observe that the dispersion relations of interfacial waves are nonlinear at the presence of surface elasticity and depend on surface elastic properties. This nonlinear feature can be used for probing the bulk and surface properties by acoustic measurements and designing waves’ guides or filters.

References

References
1.
Stoneley
,
R.
,
1924
, “
Elastic Waves at the Surface of Separation of Two Solids
,”
Proc. R. Soc. London, Ser. A
,
106
(
748
), pp.
416
428
.10.1098/rspa.1924.0079
2.
Barnett
,
D. M.
,
Lothe
,
J.
,
Gavazza
,
S. D.
, and
Musgrave
,
M. J. P.
,
1985
, “
Considerations of the Existence of Interfacial (Stoneley) Waves in Bonded Anisotropic Elastic Half-Spaces
,”
Proc. R. Soc. London, Ser. A
,
402
(
1822
), pp.
153
166
.10.1098/rspa.1985.0112
3.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(4), pp.
535
537
.10.1063/1.1539929
4.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size Dependent Elastic Properties of Structural Elements
,”
Nanotechnology
,
11
(3), pp.
139
147
.10.1088/0957-4484/11/3/301
5.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.10.1007/BF00261375
6.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1976
, “
Effect of Surface Stress on Wave Propagation in Solids
,”
J. Appl. Phys.
,
47
(10), pp.
4414
4421
.10.1063/1.322403
7.
Blanc
,
X.
,
Le Bris
,
C.
, and
Lions
,
P. L.
,
2002
, “
From Molecular Models to Continuum Mechanics
,”
Arch. Ration. Mech. Anal.
,
164
(4), pp.
341
381
.10.1007/s00205-002-0218-5
8.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.10.1103/PhysRevB.71.094104
9.
Mi
,
C.
,
Jun
,
S.
, and
Kouris
,
D. A.
,
2008
, “
Atomistic Calculations of Interface Elastic Properties in Noncoherent Metallic Bilayers
,”
Phys. Rev. B
,
77
(
7
), p.
075425
.10.1103/PhysRevB.77.075425
10.
Mohammadi
,
P.
,
Liu
,
L. P.
,
Sharma
,
P.
, and
Kukta
,
R. V.
,
2013
, “
Surface Energy, Elasticity and the Homogenization of Rough Surfaces
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
325
340
.10.1016/j.jmps.2012.10.010
11.
Liu
,
L. P.
, and
Bhattacharya
,
K.
,
2009
, “
Wave Propagation in a Sandwich Structure
,”
Int. J. Solids Struct.
,
46
(17), pp.
3290
3300
.10.1016/j.ijsolstr.2009.04.023
12.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependant Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(7), pp.
1574
1596
.10.1016/j.jmps.2005.02.009
13.
Bar On
,
B.
,
Altus
,
E.
, and
Tadmor
,
E. B.
,
2010
, “
Surface Effects in Non-Uniform Nanobeams: Continuum vs. Atomistic Modeling
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1243
1252
.10.1016/j.ijsolstr.2010.01.010
14.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
2007
, “
Surface Waves Supported by Thin-Film/Substrate Interactions
,”
IMA J. Appl. Math.
,
72
(
6
), pp.
730
747
.10.1093/imamat/hxm018
15.
Murdoch
,
A. I.
,
1976
, “
The Propagation of Surface Waves in Bodies With Material Boundaries
,”
J. Mech. Phys. Solids
,
24
(
10
), pp.
137
146
.10.1016/0022-5096(76)90023-5
16.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. London, Ser. A
,
455
(1982), pp.
437
474
.10.1098/rspa.1999.0320
17.
Huang
,
Z. P.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(1–4), pp.
151
163
.10.1007/s00707-006-0381-0
18.
Altenbach
,
H.
,
Eremeyev
,
V. A.
, and
Lebedev
,
L. P.
,
2011
, “
On the Spectrum and Stiffness of an Elastic Body With Surface Stresses
,”
ZAMM
,
91
(
9
), pp.
699
710
.10.1002/zamm.201000214
19.
Rayleigh
,
L.
,
1885
, “
On Waves Propagated Along the Plane Surface of an Elastic Solid
,”
Proc. London Math. Soc.
,
s1–17
(1), pp.
4
11
.10.1112/plms/s1-17.1.4
20.
Chadwick
,
P.
, and
Smith
,
G. D.
,
1977
, “
Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials
,”
Adv. Appl. Mech.
,
17
, pp.
303
376
.10.1016/S0065-2156(08)70223-0
21.
Barnett
,
D. M.
, and
Lothe
,
J.
,
1985
, “
Free Surface (Rayleigh) Waves in Anisotropic Elastic Half-Spaces: The Surface Impedance Method
,”
Proc. R. Soc. London. Ser. A
,
402
(
1822
), pp.
135
152
.10.1098/rspa.1985.0111
22.
McSkimin
,
H. J.
,
1964
, “
Ultrasonic Methods for Measuring the Mechanical Properties of Liquids and Solids
,”
Physical Acoustics
, Vol.
1
,
W. P.
Mason
, ed.,
Academic
,
New York
.
23.
Aussel
,
J. D.
, and
Monchalin
,
J. P.
,
1989
, “
Precision Laser-Ultrasonic Velocity Measurement and Elastic Constant Determination
,”
Ultrasonics
,
27
(
3
), pp.
165
177
.10.1016/0041-624X(89)90059-0
24.
Every
,
A. G.
, and
Sachse
,
W.
,
1990
, “
Determination of the Elastic Constants of Anisotropic Solids From Acoustic-Wave Group-Velocity Measurements
,”
Phys. Rev. B
,
42
(
13
), pp.
8196
8205
.10.1103/PhysRevB.42.8196
25.
Chu
,
Y. C.
, and
Rokhlin
,
S. I.
,
1992
, “
Determination of Macro- and Micromechanical and Interfacial Elastic Properties of Composites From Ultrasonic Data
,”
J. Acoust. Soc. Am.
,
92
(
2
), pp.
920
931
.10.1121/1.403962
26.
Coddington
,
E. A.
, and
Levinson
,
N.
,
1955
,
Theory of Ordinary Differential Equations
,
McGraw-Hill, New York
, pp. 81–90.
27.
Hu
,
L. X.
,
Liu
,
L. P.
, and
Bhattacharya
,
K.
,
2011
, “
Existence of Surface Waves and Band Gaps in Periodic Heterogeneous Half-Spaces
,”
J. Elast.
,
107
(
1
), pp.
65
79
.10.1007/s10659-011-9339-0
28.
Fu
,
Y. B.
, and
Mielke
,
A.
,
2002
, “
A New Identity for the Surface-Impedance Matrix and Its Application to the Determination of Surface-Wave Speeds
,”
Proc. R. Soc. London, Ser. A
,
458
(
2026
), pp.
2523
2543
.10.1098/rspa.2002.1000
29.
Destrade
,
M.
, and
Fu
,
Y. B.
,
2006
, “
The Speed of Interfacial Waves Polarized in a Symmetry Plane
,”
Int. J. Eng. Sci.
,
44
(1–2), pp.
26
36
.10.1016/j.ijengsci.2005.10.004
You do not currently have access to this content.