In the last decade, there has been an increasing attention on the use of highly- and weakly-nonlinear solitary waves in engineering and physics. These waves can form and travel in nonlinear systems such as one-dimensional chains of particles. When compared to linear elastic waves, solitary waves are much slower, nondispersive, and their speed is amplitude-dependent. Moreover, they can be tuned by modifying the particles' material or size, or the chain's precompression. One interesting engineering application of solitary waves is the fabrication of acoustic lenses, which are employed in a variety of fields ranging from biomedical imaging and surgery to defense systems and damage detection in materials. In this paper, we propose the design of acoustic lenses composed by one-dimensional chains of spherical particles arranged to form a line or a circle array. We show, by means of numerical simulations and an experimental validation, that both the line and circle arrays allow the focusing of waves transmitted into a solid or liquid (the host media) and the generation of compact sound bullets of large amplitude. The advantages and limitations of these nonlinear lenses to attain accurate high-energy acoustic pulses with high signal-to-noise ratio are discussed.

References

References
1.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine Anges. Math.
,
92
, pp.
156
171
.
2.
Spadoni
,
A.
, and
Daraio
,
C.
,
2010
, “
Generation and Control of Sound Bullets With a Nonlinear Acoustic Lens
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(16), pp.
7230
7234
.10.1073/pnas.1001514107
3.
Nesterenko
,
V. F.
,
1983
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
J. Appl. Mech. Tech. Phys.
,
24
(5), pp.
733
743
.10.1007/BF00905892
4.
Lazaridi
,
A. N.
, and
Nesterenko
,
V. F.
,
1985
, “
Observation of a New Type of Solitary Waves in One-Dimensional Granular Medium
,”
J. Appl. Mech. Tech. Phys.
,
26
(3), pp.
405
408
.10.1007/BF00910379
5.
Nesterenko
,
V. F.
,
Lazaridi
,
A. N.
, and
Sibiryakov
,
E. B.
,
1995
, “
The Decay of Soliton at the Contact of Two ‘Acoustic Vacuums'
,”
J. Appl. Mech. Tech. Phys.
,
36
(2), pp.
166
168
.10.1007/BF02369645
6.
Coste
,
C.
,
Falcon
,
E.
, and
Fauve
,
S.
,
1997
, “
Solitary Waves in a Chain of Beads Under Hertz Contact
,”
Phys. Rev. E
,
56
(5), pp.
6104
6117
.10.1103/PhysRevE.56.6104
7.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
(1), p.
016603
.10.1103/PhysRevE.72.016603
8.
Daraio
,
C.
,
Nesterenko
, V
. F.
,
Herbold.
E. B.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(2), p.
026610
.10.1103/PhysRevE.73.026610
9.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
,
2005
, “
How Hertzian Solitary Waves Interact With Boundaries in a 1D Granular Medium
,”
Phys. Rev. Lett.
,
94
(17), p.
178002
.10.1103/PhysRevLett.94.178002
10.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
,
2007
, “
Solitary Wave Trains in Granular Chains: Experiments, Theory and Simulations
,”
Granul. Matter
,
10
(1), pp.
13
20
.10.1007/s10035-007-0054-2
11.
Nesterenko
,
V. F.
,
Daraio
,
C.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media
,”
Phys. Rev. Lett.
,
95
(15), p.
158702
.10.1103/PhysRevLett.95.158702
12.
Yang
,
J.
,
Silvestro
,
C.
,
Khatri
,
D.
,
de Nardo
,
L.
, and
Daraio
,
C.
,
2011
, “
Interaction of Highly Nonlinear Solitary Waves With Linear Elastic Media
,”
Phys. Rev. E
,
83
(4), p.
046606
.10.1103/PhysRevE.83.046606
13.
Carretero-González
,
R.
,
Khatri
,
D.
,
Porter
,
M. A.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2009
, “
Dissipative Solitary Waves in Granular Crystals
,”
Phys. Rev. Lett.
,
102
(2), p.
024102
.10.1103/PhysRevLett.102.024102
14.
Ni
,
X.
,
Rizzo
,
P.
, and
Daraio
,
C.
,
2011
, “
Actuators for the Generation of Highly Nonlinear Solitary Waves
,”
Rev. Sci. Instrum.
,
82
(3), p.
034902
.10.1063/1.3556442
15.
Coste
,
C.
, and
Gilles
,
B.
,
1999
, “
On the Validity of Hertz Contact Law for Granular Material Acoustics
,”
Eur. Phys. J. B
,
7
(1), pp.
155
168
.10.1007/s100510050598
16.
Ni
,
X.
,
Rizzo
,
P.
, and
Daraio
,
C.
,
2011
, “
Laser-Based Excitation of Nonlinear Solitary Waves in a Chain of Particles
,”
Phys. Rev. E
,
84
(2), p.
026601
.10.1103/PhysRevE.84.026601
17.
Nesterenko
,
V. F.
,
2001
,
Dynamics of Heterogeneous Materials
,
Springer
,
New York
.
18.
Fraternali
,
F.
,
Porter
,
M. A.
, and
Daraio
,
C.
,
2009
, “
Optimal Design of Composite Granular Protectors
,”
Mech. Adv. Mater. Struct.
,
17
(1), pp.
1
19
.10.1080/15376490802710779
19.
Sen
,
S.
,
Manciu
,
M.
, and
Wright
,
J. D.
,
1998
, “
Solitonlike Pulses in Perturbed and Driven Hertzian Chains and Their Possible Applications in Detecting Buried Impurities
,”
Phys. Rev. E
,
57
(2), pp.
2386
2397
.10.1103/PhysRevE.57.2386
20.
Hong
,
J.
, and
Xu
,
A.
,
2002
, “
Nondestructive Identification of Impurities in Granular Medium
,”
Appl. Phys. Lett.
,
81
(25), pp.
4868
4870
.10.1063/1.1522829
21.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nat. Mater.
,
10
(9), pp.
665
668
.10.1038/nmat3072
22.
Ni
,
X.
,
Rizzo
,
P.
,
Yang.
J.
,
Katri.
D.
, and
Daraio
,
C.
,
2012
, “
Monitoring the Hydration of Cement Using Highly Nonlinear Solitary Waves
,”
NDT E Int.
,
52
, pp.
76
85
.10.1016/j.ndteint.2012.05.003
23.
Ni
,
X.
, and
Rizzo
,
P.
,
2012
, “
Use of Highly Nonlinear Solitary Waves in Nondestructive Testing
,”
Mater. Eval.
,
70
(May), pp.
561
569
.
24.
Ni
,
X.
, and
Rizzo
,
P.
,
2012
, “
Highly Nonlinear Solitary Waves for the Inspection of Adhesive Joints
,”
Exp. Mech.
,
52
(9), pp.
1493
1501
.10.1007/s11340-012-9595-3
25.
Yang
,
J.
,
Silvestro.
C.
,
Sangiorgio
,
S. N.
,
Borkowski
,
S. L.
,
Ebramzadeh
,
E.
,
de Nardo
,
L.
, and
Daraio
,
C.
,
2012
, “
Nondestructive Evaluation of Orthopaedic Implant Stability in THA Using Highly Nonlinear Solitary Waves
,”
Smart Mater. Struct.
,
21
(1), p.
012002
.10.1088/0964-1726/21/1/012002
26.
Daraio
,
C.
,
2010
, “
Systems and Methods for Controlling Highly Nonlinear Acoustic Waves or Pulses
,” U.S. Patent 20110209940 A1, Application number US 13/035,681, February 26.
27.
Li
,
F.
,
Zhao
,
L.
,
Tian
,
Z.
,
Yu
,
L.
, and
Yang
,
J.
,
2013
, “
Visualization of Solitary Waves Via Laser Doppler Vibrometry for Heavy Impurity Identification in a Granular Chain
,”
Smart Mater. Struct.
,
22
(3), p.
035016
.10.1088/0964-1726/22/3/035016
28.
Donahue
,
C. M.
,
Anzel
,
P. W. J.
,
Bonanomi
,
L.
,
Keller
,
T. A.
, and
Daraio
,
C.
,
2014
, “
Experimental Realization of a Nonlinear Acoustic Lens With a Tunable Focus
,”
Appl. Phys. Lett.
,
104
(1), p.
014103
.10.1063/1.4857635
29.
Mallat
,
S.
,
1999
,
A Wavelet Tour of Signal Processing
,
Academic Press, Burlington, MA
.
30.
Sale
,
M.
,
Rizzo
,
P.
, and
Marzani
,
A.
,
2011
, “
Semi-Analytical Formulation for the Guided Waves-Based Reconstruction of Elastic Moduli
,”
Mech. Syst. Sign. Proc.
,
25
(
6
), pp.
2241
2256
.10.1016/j.ymssp.2011.02.004
31.
Lanza di Scalea
,
F.
,
Rizzo
,
P.
, and
Marzani
,
A.
,
2004
, “
Propagation of Ultrasonic Guided Waves in Lap-Shear Adhesive Joints: Case of Incident a0 Lamb Wave
,”
J. Acoust. Soc. Am.
,
115
(
1
), pp.
146
156
.10.1121/1.1630999
32.
Fraternali
,
F.
,
Senatore
,
L.
, and
Daraio
,
C.
,
2012
, “
Solitary Waves on Tensegrity Lattices
,”
J. Mech. Phys. Solids
,
60
(6), pp.
1137
1144
.10.1016/j.jmps.2012.02.007
You do not currently have access to this content.