Cropping is a cutting process whereby opposing aligned blades create a shearing failure by exerting opposing forces normal to the surfaces of a metal sheet or plate. Building on recent efforts to quantify cropping, this paper formulates a plane strain elastic–plastic model of a plate subject to shearing action by opposing rigid platens. Shear failure at the local level is modeled by a cohesive zone characterized by the peak shear traction and the energy dissipated by shear failure process at the microscopic level. The model reveals the interplay between shear cracking and the extensive plastic shearing accompanying the cutting process. Specifically, it provides insight into the influence of the material’s microscopic shear strength and toughness on the total work of cropping. The computational model does not account for deformation of the cropping tool, friction between sliding surfaces, and material temperature and rate dependence.

References

References
1.
Atkins
,
A. G.
,
1980
, “
On Cropping and Related Processes
,”
Int. J. Mech. Sci.
,
22
(4), pp.
215
231
.10.1016/0020-7403(80)90037-5
2.
Atkins
,
A. G.
,
1981
, “
Surfaces Produced by Guillotining
,”
Philos. Mag. A
,
43
(3), pp.
627
641
.10.1080/01418618108240399
3.
Atkins
,
A. G.
,
1990
, “
On the Mechanics of Guillotining Ductile Metals
,”
J. Mater. Proc. Tech.
,
24
, pp.
245
247
.10.1016/0924-0136(90)90186-X
4.
Atkins
,
T
.,
2012
, “
Perforation of Metal Plates Due to Through-Thickness Shearing and Cracking. Optimum Toughness/Strength Ratios, Deformation Transitions and Scaling
,”
Int. J. Impact Eng.
,
48
, pp.
4
14
.10.1016/j.ijimpeng.2010.06.005
5.
Zhou
,
Q.
, and
Wierzbicki
,
T.
,
1996
, “
A Tension Zone Model of Blanking and Tearing of Ductile Metal Plates
,”
Int. J. Mech. Sci.
,
38
(3), pp.
303
324
.10.1016/0020-7403(95)00054-2
6.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic–Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(6), pp.
1377
1397
.10.1016/0022-5096(92)90020-3
7.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1993
, “
The Influence of Plasticity on Mixed Mode Interface Toughness
,”
J. Mech. Phys. Solids
,
41
(6), pp.
1119
1135
.10.1016/0022-5096(93)90057-M
8.
Borvik
,
T.
,
Langseth
,
M.
,
Hoppenstad
,
O. S.
, and
Malo
,
K. A.
,
1999
, “
Ballistic Penetration of Steel Plates
,”
Int. J. Impact Eng.
,
22
(9-10), pp.
855
886
.10.1016/S0734-743X(99)00011-1
9.
Borvik
,
T.
,
Hoppenstad
,
O. S.
,
Berstad
,
T.
, and
Langseth
,
M.
,
2002
, “
Perforation of 12 mm Steel Plates by 20 mm Diameter Projectiles With Flat, Hemispherical and Conical Noses: Part II: Numerical Simulations
,”
Int. J. Impact Eng.
,
27
(1), pp.
37
64
.10.1016/S0734-743X(01)00035-5
10.
Nahshon
,
K.
,
Pontin
,
M. G.
,
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Zok
,
F. W.
,
2007
, “
Dynamic Shear Rupture of Steel Plates
,”
J. Mech. Mater. Struct.
,
2
(10), pp,
2049
2065
.10.2140/jomms.2007.2.2049
11.
Xue
,
Z.
,
Pontin
,
M. A.
,
Zok
,
F. W.
, and
Hutchinson
,
J. W.
,
2010
, “
Calibration Procedures for a Computational Model of Ductile Fracture
,”
Eng. Fracture Mech.
,
77
(3), pp.
492
509
.10.1016/j.engfracmech.2009.10.007
12.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—I. Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(1), pp.
2
15
.10.1115/1.3443401
13.
Nahshon
,
K.
, and
Hutchinson
,
J.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech./A Solids
,
27
(1), pp.
1
17
.10.1016/j.euromechsol.2007.08.002
14.
Johnson
,
W.
, and
Slater
,
R. A. C.
,
1967
, “
A Survey of the Slow and Fast Blanking of Metals at Ambient and High Temperatures
,”
International Conference on Manufacturing Technology
(CIRP-ASTME
), Ann Arbor, MI, September, pp.
825
851
.
15.
Tvergaard
,
V.
,
2009
, “
Behaviour of Voids in a Shear Field
,”
Int. J. Fracture
,
158
(1), pp.
41
49
.10.1007/s10704-009-9364-1
16.
Tvergaard
,
V.
, and
Nielsen
,
K. L.
,
2010
, “
Relations Between a Micro-Mechanical Model and a Damage Model for Ductile Failure in Shear
,”
J. Mech. Phys. Solids
,
58
(9), pp.
1243
1252
.10.1016/j.jmps.2010.06.006
17.
Hutchinson
,
J. W.
,
1973
, “
Finite Strain Analysis of Elastic–Plastic Solids and Structures
,”
Numerical Solution of Nonlinear Structural Problems
,
R. F.
Hartung
,
ed., ASME
,
New York
, pp.
17
29
.
18.
Atkins
,
T.
2009
,
The Science and Engineering of Cutting
, Butterworth-Heinemann, London.
You do not currently have access to this content.