Numerical simulations and analysis of the vortex rope formation in a simplified draft tube of a model Francis turbine are carried out in this paper, which is the first part of a two-paper series. The emphasis of this part is on the simulation and investigation of flow using different turbulence closure models. Two part-load operating conditions with same head and different flow rates (91% and 70% of the best efficiency point (BEP) flow rate) are considered. Steady and unsteady simulations are carried out for axisymmetric and three-dimensional grid in a simplified axisymmetric geometry, and results are compared with experimental data. It is seen that steady simulations with Reynolds-averaged Navier–Stokes (RANS) models cannot resolve the vortex rope and give identical symmetric results for both the axisymmetric and three-dimensional flow geometries. These RANS simulations underpredict the axial velocity (by at least 14%) and turbulent kinetic energy (by at least 40%) near the center of the draft tube, even quite close to the design condition. Moving farther from the design point, models fail in predicting the correct levels of the axial velocity in the draft tube. Unsteady simulations are performed using unsteady RANS (URANS) and detached eddy simulation (DES) turbulence closure approaches. URANS models cannot capture the self-induced unsteadiness of the vortex rope and give steady solutions while DES model gives sufficient unsteady results. Using the proper unsteady model, i.e., DES, the overall shape of the vortex rope is correctly predicted and the calculated vortex rope frequency differs only 6% from experimental data. It is confirmed that the vortex rope is formed due to the roll-up of the shear layer at the interface between the low-velocity inner region created by the wake of the crown cone and highly swirling outer flow.

References

References
1.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery
,
Springer
,
London
, Chap. 2.
2.
Sick
,
M.
,
Dörfler
,
P.
,
Michler
,
W.
,
Salllaberger
,
M.
, and
Lohmberg
,
A.
,
2004
, “
Investigation of the Draft Tube Vortex in a Pump-Turbine
,”
22nd IAHR Symposium on Hydraulic Machinery and Systems
, Stockholm, Sweden, June 22–July 2.
3.
Ciocan
,
G. D.
,
Iliescu
,
M. S.
,
Vu
,
T. C.
,
Nennemann
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the FLINDT Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
146
158
.10.1115/1.2409332
4.
Zhang
,
R. K.
,
Mao
,
F.
,
Wu
,
J. Z.
,
Chen
,
S. Y.
,
Wu
,
Y. L.
, and
Liu
,
S. H.
,
2009
, “
Characteristics and Control of the Draft-Tube Flow in Part-Load Francis Turbine
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021101
.10.1115/1.3002318
5.
Vu
,
T. C.
,
Devals
,
C.
,
Zhang
,
Y.
,
Nennemann
,
B.
, and
Guibault
,
F.
,
2011
, “
Steady and Unsteady Flow Computation in an Elbow Draft Tube With Experimental Validation
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp. 85–96.10.5293/IJFMS.2011.4.1.085
6.
Sick
,
M.
,
Michler
,
W.
,
Weiss
,
T.
, and
Keck
,
H.
,
2009
, “
Recent Developments in the Dynamic Analysis of Water Turbines
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
223
(
4
), pp.
415
427
.10.1243/09576509JPE578
7.
Yaras
,
M. I.
, and
Grosvernor
,
A. D.
,
2003
, “
Evaluation of One- and Two-Equation Low-Re Turbulence Models. Part I—Axisymmetric Separating and Swirling Flow
,”
Int. J. Numer. Methods Fluids
,
42
(
12
), pp.
1293
1319
.10.1002/fld.585
8.
Dhiman
,
S.
,
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2011
, “
Simulation of Flow Through Conical Diffusers With and Without Inlet Swirl Using CFD
,”
ASME-JSME-KSME Joint Fluids Engineering Conference
, Hamamatsu, Japan, July 24–29,
ASME
Paper No. AJK2011-03005.10.1115/AJK2011-03005
9.
Ruprecht
,
A.
,
Helmrich
,
T.
,
Aschenbrenner
,
T.
, and
Scherer
,
T.
,
2002
, “
Simulation of Vortex Rope in a Turbine Draft Tube
,”
21st IAHR Symposium on Hydraulic Machinery and Systems
, Lausanne, Switzerland, September 9–12.
10.
Guo
,
Y.
,
Kato
,
C.
, and
Miyagawa
,
K.
,
2006
, “
Large-Eddy Simulation of Non-Cavitating and Cavitating Flows in an Elbow Draft Tube
,”
23rd IAHR Symposium on Hydraulic Machinery and Systems
, Yokohama, Japan, October 17–21, Paper No. 95.
11.
Paik
,
J.
,
Sotiropoulos
,
F.
, and
Sale
,
M.
,
2005
, “
Numerical Simulation of Swirling Flow in Complex Hydroturbine Draft Tube Using Unsteady Statistical Turbulence Models
,”
J. Hydraulic Eng.
,
131
(
6
), pp.
441
456
.10.1061/(ASCE)0733-9429(2005)131:6(441)
12.
Avellan
,
F.
,
2000
, “
Flow Investigation in a Francis Draft Tube: The FLINDT Project
,”
20th IAHR Symposium on Hydraulic Machinery and Systems
, Charlotte, NC, August 6–9.
13.
Iliescu
,
M.
,
Ciocan
,
G. D.
, and
Avellan
,
F.
,
2008
, “
Analysis of the Cavitating Draft Tube Vortex in a Francis Turbine Using Particle Image Velocimetry Measurements in Two-Phase Flow
,”
ASME J. Fluids Eng.
,
130
(
2
), p.
021105
.10.1115/1.2813052
14.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Hasmatsuchi
,
V.
,
Anton
,
I.
, and
Avellan
,
F.
,
2010
, “
Analysis and Prevention of Vortex Breakdown in the Simplified Discharge Cone of a Francis Turbine
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051102
.10.1115/1.4001486
15.
Rudolf
,
P.
,
2009
, “
Connection Between Inlet Velocity Field and Diffuser Flow Instability
,”
Appl. Comput. Mech.
,
3
, pp.
177
184
.
16.
Mauri
,
S.
,
2002
, “
Numerical Simulation and Flow Analysis of an Elbow Diffuser
,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
17.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries, La Canada, CA
.
18.
Hanjalic
,
K.
,
2004
, “
Closure Models for Incompressible Turbulent Flows
” (VKI Lecture Series 2004/2005), von Kármán Institute, Rhode-St-Genese, Belgium.
19.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London
.
20.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
21.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
22.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
, Vol.
4
,
K.
Hanjalic
,
Y.
Nagano
, and
M. Tummers
, eds.,
Begell House, Redding, CT
.
23.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
, pp.
265
291
.10.1016/j.jcp.2004.10.018
24.
Nishi
,
M.
,
Matsunaga
,
S.
,
Kubota
,
T.
, and
Senoo
,
Y.
,
1982
, “
Flow Regimes in an Elbow-Type Draft Tube
,”
11th IAHR Symposium on Hydraulic Machinery and Systems
, Amsterdam, Netherlands, September 13–17.
25.
Cervantes
,
M. J.
,
Engström
,
T. F.
, and
Gustavsson
,
L. H.
,
2005
, “
Turbine-99 III: Proceedings of the
3rd IAHR/ERCOFTAC Workshop on Draft Tube Flows,” Porjus, Sweden, December 8–9
.
26.
Vu
,
T. C.
,
Koller
,
M.
,
Gauthier
,
M.
, and
Deschenes
,
C.
,
2010
, “
Flow Simulation and Efficiency Hill Chart Prediction for a Propeller Turbine
,”
25th IAHR Symposium on Hydraulic Machinery and Systems
, Timisoara, Romania, September 20–24.
27.
“OpenFOAM: The Open Source Computational Fluid Dynamics (CFD) Toolbox,” 2004, Silicon Graphics International Corp., http://www.openfoam.com
28.
ANSYS
,
2010
,
ANSYS FLUENT 13.0 User's Guide
,
Ansys Inc.
,
Canonsburg, PA
.
29.
Jacob
,
T.
,
1993
, “
Evaluation sur Modèle Réduit et Prédiction de la Stabilité de Fonctionnement des Turbines Francis
,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
30.
Nishi
,
M.
, and
Liu
,
S. H.
,
2012
, “
An Outlook on the Draft-Tube-Surge Study
,”
26th IAHR Symposium on Hydraulic Machinery and Systems
, Beijing, China, August 19–23.
You do not currently have access to this content.