In an existing substructural dynamic response reconstruction method (Li, J., and Law, S.S., 2011. “Substructural Response Reconstruction in Wavelet Domain,” ASME J. Appl. Mech., 78(4), p. 041010) developed by Law, two sets of sensors are needed for the reconstruction of dynamic responses at selected degrees-of-freedom. A method to find the optimal sensor placement is presented in this paper for the substructural response reconstruction. It is based on the effective independence method but in the time domain. Unlike previous methods on sensor placement, two sets of optimal sensor placement are needed with the first set for estimating the interface forces between substructures, and the second set for reconstructing the responses. Sensors that capture the most information of the interface forces will be selected into the first set, and the subsequently estimated interface forces are used to reconstruct the responses at the second set of selected degrees-of-freedom. The selection of the second set of sensors is based on the least measurement noise effect in the response reconstruction process. A box-section bridge deck is adopted in the simulation studies. Numerical simulations with the forward and backward sequential sensor placement methods show that the proposed method could give reasonable predictions with smaller error in the reconstructed responses, and sensor locations along the major directions of the interface forces should be selected into the first or the second set of sensor configuration.

References

References
1.
Myung
,
J. I.
, and
Navarro
,
D. J.
,
2004
, “
Information Matrix
,”
Encyclopedia of Behavioral Statistics
,
B.
Everitt
and
D.
Howel
, eds.,
Wiley
,
New York
.
2.
Papadimitriou
,
C.
, and
Beck
,
J. L.
,
2000
, “
Entropy-Based Optimal Sensor Location for Structural Model Updating
,”
J. Vibr. Control
,
6
(
5
), pp.
781
800
.10.1177/107754630000600508
3.
Papadimitriou
,
C.
, and
Lombaert
,
G.
,
2012
, “
The Effect of Prediction Error Correlation on Optimal Sensor Placement in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
28
, pp.
105
127
.10.1016/j.ymssp.2011.05.019
4.
Kammer
,
D. C.
,
1991
, “
Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures
,”
J. Guidance, Control, and Dynamics
,
14
(
2
), pp.
251
259
.10.2514/3.20635
5.
Kammer
,
D. C.
, and
Yao
,
L.
,
1994
, “
Enhancement of On-orbit Modal Identification of Large Space Structures Through Sensor Placement
,”
J. Sound Vib.
,
171
(
1
), pp.
119
139
.10.1006/jsvi.1994.1107
6.
Kammer
,
D. C.
,
2005
, “
Sensor Set Expansion for Modal Vibration Testing
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
700
713
.10.1016/j.ymssp.2004.06.003
7.
Kammer
,
D. C.
, and
Peck
,
J. A.
,
2008
, “
Mass-Weighting Methods for Sensor Placement Using Sensor Set Expansion Techniques
,”
Mech. Syst. Signal Process.
,
22
(
7
), pp.
1515
1525
.10.1016/j.ymssp.2008.01.002
8.
Poston
,
W. L.
, and
Tolson
,
R. H.
,
1992
, “
Maximizing the Determinant of the Information Matrix With the Effective Independence Method
,”
J. Guidance, Control, and Dynamics
,
15
(
6
), pp.
1513
1514
.10.2514/3.11419
9.
Shi
,
Z. Y.
, and
Law
,
S. S.
,
2000
, “
Optimum Sensor Placement for Structural Damage Detection
,”
J. Eng. Mech.
,
126
(
11
), pp.
1173
1179
.10.1061/(ASCE)0733-9399(2000)126:11(1173)
10.
Yao
,
L.
, and
Sethares
,
W. A.
,
1992
, “
Sensor Placement for On-orbit Modal Identification of Large Space Structure via a Genetic Algorithm
,”
IEEE International Conference on Systems Engineering
, pp.
332
335
.
11.
Zavoni
,
E. H.
,
Iturrizaga
,
R. M.
, and
Esteva
,
L.
,
1999
, “
Optimal Instrumentation of Structures on Flexible Base for System Identification
,”
Earthquake Eng. Struct. Dyn.
,
28
(
12
), pp.
1471
1482
.10.1002/(SICI)1096-9845(199912)28:12<1471::AID-EQE872>3.0.CO;2-M
12.
Zavoni
,
E. H.
, and
Esteva
,
L.
,
1998
, “
Optimal Instrumentation of Uncertain Structural Systems Subject to Earthquake Ground Motions
,”
Earthquake Eng. Struct. Dyn.
,
27
(
4
), pp.
343
362
.10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F
13.
Yuen
,
K. V.
,
Katafygiotis
,
L. S.
,
Papadimitriou
,
C.
, and
Mickleborough
,
N. C.
,
2001
, “
Optimal Sensor Placement Methodology for Identification With Unmeasured Excitation
,”
J. Dyn. Syst.
,
123
(
4
), pp.
677
686
.10.1115/1.1410929
14.
Ambrosino
,
G.
, and
Celentano
,
G.
,
1995
, “
A Spline Approach to State Reconstruction for Optimal Active Vibration Control of Flexible Systems
,”
Proceedings of the 4th IEEE Conference on Control Applications
, pp.
896
901
.
15.
Setola
,
R.
,
1998
, “
A Spline-Based State Reconstruction for Active Vibration Control of A Flexible Beam
,”
J. Sound Vib.
,
213
(
5
), pp.
777
790
.10.1006/jsvi.1998.1531
16.
Limongelli
,
M. P.
,
2003
, “
Optimal Location of Sensors for Reconstruction of Seismic Responses Through Spline Function Interpolation
,”
Earthquake Eng. Struct. Dyn.
,
32
(
7
), pp.
1055
1074
.10.1002/eqe.262
17.
Koh
,
C. G.
, and
Shankar
,
K.
,
2003
, “
Substructural Identification Method Without Interface Measurement
,”
J. Eng. Mech.
,
129
(
7
), pp.
769
776
.10.1061/(ASCE)0733-9399(2003)129:7(769)
18.
Yuen
,
K. V.
, and
Katafygiotis
,
L. S.
,
2006
, “
Substructure Identification and Health Monitoring Using Noisy Response Measurements Only
,”
Computer-Aided Civil and Infrastructure Engineering
,
21
(
4
), pp.
280
291
.10.1111/j.1467-8667.2006.00435.x
19.
Zhang
,
D.
, and
Johnson
,
E. A.
,
2012
, “
Substructure Identification for Shear Structures: Cross-Power Spectral Density Method
,”
Smart Mater. Struct.
,
21
(
5
), p.
055006
.10.1088/0964-1726/21/5/055006
20.
Li
,
J.
, and
Law
,
S. S.
,
2011
, “
Substructural Response Reconstruction in Wavelet Domain
,”
J. Appl. Mech.
,
78
(
4
), p.
041010
.10.1115/1.4003738
21.
Li
,
J.
, and
Law
,
S. S.
,
2012
, “
Substructural Damage Detection with Incomplete Information of the Structure
,”
ASME J. Appl. Mech.
,
79
, p.
041003
.10.1115/1.4005552
22.
Clough
,
R. W.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
,
McGraw-Hill Companies
,
New York
.
You do not currently have access to this content.