Magnetic shape memory alloys (MSMAs) are interesting materials because they exhibit considerable recoverable strain (up to 10%) and fast response time (higher than 1 kHz). MSMAs are comprised of martensitic variants with tetragonal unit cells and a magnetization vector that is innately aligned approximately to the short side of the unit cell. These variants reorient either to align the magnetization vector with an applied magnetic field or to align the short side of the unit cell with an applied compressive stress. This reorientation leads to a mechanical strain and an overall change in the material's magnetization, allowing MSMAs to be used as actuators, sensors, and power harvesters. This paper presents a phenomenological thermodynamic-based model able to predict the response of an MSMA to any two-dimensional (2D) magneto-mechanical loading. The model presented here is more physical and less empirical than other models in the literature, requiring only three model parameters to be calibrated from experimental results. In addition, this model includes evolution rules for the magnetic domain volume fractions and the angle of rotation of the magnetization vectors based on thermodynamic requirements. The resulting model is calibrated using a single, relatively simple experiment. Model predictions are compared with experimental data from a wide variety of 2D magneto-mechanical load cases. Overall, model predictions correlate well with experimental results. Additionally, methods for calibrating demagnetization factors from empirical data are discussed, and results indicate that using calibrated demagnetization factors can improve model predictions compared with the same model using closed-form demagnetization factors.

References

1.
Hirsinger
,
L.
, and
Lexcellent
,
C.
,
2003
, “
Modelling Detwinning of Martensite Platelets Under Magnetic and (or) Stress Actions on Nimnga Alloys
,”
J. Magn. Magn. Mater.
,
254–255
, pp.
275
277
.10.1016/S0304-8853(02)00773-4
2.
Kiefer
,
B.
, and
Lagoudas
,
D. C.
,
2005
, “
Magnetic Field-Induced Martensitic Variant Reorientation in Magnetic Shape Memory Alloys
,”
Philos. Mag.
,
85
, p.
4289
.10.1080/14786430500363858
3.
Kiefer
,
B.
,
2006
, “
A Phenomenological Constitutive Model for Magnetic Shape Memory Alloys
,” Ph.D. thesis, Texas A&M University, College Station, TX.
4.
Kiefer
,
B.
, and
Lagoudas
,
D. C.
,
2008
, “
Modeling of the Variant Reorientation in Magnetic Shape-Memory Alloys Under Complex Magnetomechanical Loading
,”
Mater. Sci. Eng. A Struct. Mater.
,
481
, pp. 399–342.10.1016/j.msea.2006.11.184
5.
Kiefer
,
B.
, and
Lagoudas
,
D. C.
,
2009
, “
Modeling the Coupled Strain and Magnetization Response of Magnetic Shape Memory Alloys Under Magnetomechanical Loading
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
143
170
.10.1177/1045389X07086688
6.
Ma
,
Y. F.
, and
Li
,
J. Y.
,
2007
, “
Magnetization Rotation and Rearrangement of Martensite Variants in Ferromagnetic Shape Memory Alloys
,”
Appl. Phys. Lett.
,
90
, p.
172504
.10.1063/1.2730752
7.
Li
,
L. J.
, and
Ma
,
Y. F.
,
2008
, “
Magnetoelastic Modeling of Magnetization Rotation and Variant Rearrangement in Ferromagnetic Shape Memory Alloys
,”
Mech. Mater.
,
40
, pp.
1022
1036
.10.1016/j.mechmat.2008.06.003
8.
Li
,
L. J.
,
Li
,
J. Y.
,
Shu
,
Y. C.
,
Chen
,
H. Z.
, and
Yen
,
J. H.
,
2007
, “
Magnetization Rotation and Rearrangement of Martensite Variants in Ferromagnetic Shape Memory Alloys
,”
Appl. Phys. Lett.
,
90
, p.
172504
.10.1063/1.2730752
9.
Morrison
,
P.
,
Seelecke
,
S.
,
Krevet
,
B.
, and
Kohl
,
M.
,
2008
, “
Development of a Meso-Scale Thermo-Magneto-Mechanical Free Energy Model for NiMnGa
,”
Proc. SPIE
,
6929
, p. 692926.10.1117/12.776457
10.
Sarawate
,
N. N.
, and
Dapino
,
M. J.
,
2007
, “
A Continuum Thermodynamics Model for the Sensing Effect in Ferromagnetic Shape Memory NiMnGa
,”
J. Appl. Phys.
,
101
, p.
123522
.10.1063/1.2748356
11.
Sarawate
,
N. N.
, and
Dapino
,
M. J.
,
2009
, “
Dynamic Sensing Behavior of Ferromagnetic Shape Memory NiMnGa
,”
Smart Mater. Struct.
,
18
, p.
104014
.10.1088/0964-1726/18/10/104014
12.
Sarawate
,
N. N.
, and
Dapino
,
M. J.
,
2010
, “
Magnetomechanical Characterization and Unified Energy Model for the Quasistatic Behavior of Ferromagnetic Shape Memory NiMnGa
,”
Smart Mater. Struct.
,
19
, p.
035001
.10.1088/0964-1726/19/3/035001
13.
Stefanelli
,
U.
, and
Bessoud
,
A.
,
2011
, “
Magnetic Shape Memory Alloys: Three-Dimensional Modeling and Analysis
,”
Math. Models Methods Appl. Sci.
,
21
, pp.
1043
-
1070
.10.1142/S0218202511005246
14.
Chernenko
, V
.
,
L'vov
, V
.
,
Cesari
,
E.
,
Pons
,
J.
,
Rudenko
,
A.
,
Date
,
H.
,
Matsumoto
,
M.
, and
Kanomata
,
T.
,
2004
, “
Stress Strain Behaviour of NiMnGa Alloys: Experiment and Modeling
,”
Mater. Sci. Eng.
,
378
, pp.
349
352
.10.1016/j.msea.2003.12.052
15.
Auricchio
,
F.
,
Bessoud
,
A.-L.
,
Reali
,
A.
, and
Stefanelli
,
U.
,
2011
, “
A Three-Dimensional Phenomenological Model for Magnetic Shape Memory Alloys
,”
GAMM-Mitt.
,
34
, pp.
90
96
.10.1002/gamm.201110014
16.
Zhu
,
Y.
, and
Dui
,
G.
,
2007
, “
Micromechanical Modeling of the Stress-Induced Superelastic Strain in Magnetic Shape Memory Alloy
,.
Mech. Mater.
,
39
, pp.
1025
1034
.10.1016/j.mechmat.2007.05.001
17.
Zhu
,
Y.
, and
Yu
,
K.
,
2013
, “
A Model Considering Mechanical Anisotropy of Magnetic-Field-Induced Superelastic Strain in Magnetic Shape Memory Alloys
,”
J. Alloys and Compounds
,
550
, pp.
308
313
.10.1016/j.jallcom.2012.09.143
18.
LaMaster
,
D.
,
Feigenbaum
,
H. P.
,
Kiefer
,
B.
,
Ciocanel
,
C.
, and
Nelson
, I
.
,
2013
, “
Thermodynamic-Based Model for Magnetic Shape Memory Alloys With Modified Magnetic Domains
,” 4th International Conference on Ferromagnetic Shape Memory Alloys, Boise, ID, June 3–7.
19.
LaMaster
,
D.
,
Feigenbaum
,
H.
,
Nelson
,
I.
, and
Ciocanel
,
C.
,
2013
, “
Magnetization in MSMA: 2D Modeling and Experimental Characterizations
,”
Proc. SPIE
,
8689
, p. 86890Z.10.1117/12.2009766
20.
LaMaster
,
D.
,
Feigenbaum
,
H.
,
Nelson
, I
.
, and
Ciocanel
,
C.
,
2013
, “
A Memory Variable Approach to Modeling the Magneto-Mechanical Behavior of Magnetic Shape Memory Alloys
,” ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, September 16–18.
21.
Chen
,
X.
,
Moumni
,
Z. Z.
,
He
,
Y.
, and
Zhang
,
W.
,
2013
, “
A Three-Dimensional Model of Magneto-Mechanical Behaviors of Martensite Reorientation in Ferromagnetic Shape Memory Alloys
,”
J. Mech. Phys. Solids (in press)
.
22.
He
,
Y. J.
,
Chen
,
X.
, and
Moumni
,
Z.
,
2011
, “
Two-Dimensional Analysis to Improve the Output Stress in Ferromagnetic Shape Memory Alloys
,”
J. Appl. Phys.
,
110
, p.
063905
.10.1063/1.3636366
23.
Lai
,
Y. W.
,
Scheerbaum
,
N.
,
Hinz
,
O.
,
Gutfleisch
,
O.
, Schäfer, R., Schultz, L., and McCord, J.,
2007
, “
Absence of Magnetic Domain Wall Motion During Magnetic Field Induced Twin Boundary Motion in Bulk Magnetic Shape Memory Alloys
,”
Appl. Phys. Lett.
,
90
, p.
192504
.10.1063/1.2737934
24.
Scheerbaum
,
N.
,
Lai
,
Y.
,
Leisegang
,
T.
,
Thomas
,
M.
,
Liu
,
J.
,
Khlopkov
,
K.
,
McCorda
,
J.
,
Fahlera
,
S.
,
Tragera
,
R. D. C.
,
Meyer
,
L. S.
, and
Gutfleisch
,
O.
,
2010
, “
Constraint-Dependent Twin Variant Distribution in Ni2MnGa Single Crystal, Polycrystals and Thin Film: An EBSD Study
,”
Acta Mater.
,
58
, pp.
4629
4638
.10.1016/j.actamat.2010.04.030
25.
Wang
,
J.
and
Steinmann
,
P.
,
2012
. “
A Variational Approach Towards the Modeling of Magnetic Field-Induced Strains in Magnetic Shape Memory Alloys
,”
J. Mech. Phys. Solids
,
60
, pp.
1179
1200
.10.1016/j.jmps.2012.02.003
26.
Waldauer
,
A.
,
Feigenbaum
,
H.
,
Ciocanel
,
C.
, and
Bruno
,
N.
,
2012
, “
Improvements to the Thermodynamic Model for Magnetic Shape Memory Alloys
,”
Smart Mater. Struct.
,
21
, p. 094015.10.1088/0964-1726/21/9/094015
27.
Chen
,
D.-X.
,
Pardo
,
E.
, and
Sanchez
,
A.
,
2005
, “
Demagnetizing Factors for Rectangular Prisms
,”
IEEE Trans. Magn.
,
38
, pp.
1742
1752
.10.1109/TMAG.2002.1017766
28.
Aharoni
,
A.
,
1996
,
Introduction to the Theory of Ferromagnetism
,
Oxford University Press
,
New York
.
29.
Nelson
,
I.
,
Ciocanel
,
C.
,
LaMaster
,
D.
, and
Feigenbaum
,
H.
,
2013
, “
Three Dimensional Experimental Characterization of a NiMnGa Alloy
,”
Proc. SPIE
,
8689
, p. 86890Q.10.1117/12.2024874
30.
Nelson
,
I.
,
Ciocanel
,
C.
,
LaMaster
,
D.
, and
Feigenbaum
,
H.
,
2013
, “
The Impact of Boundary Conditions on the Response of NiMnGa Samples in Actuation and Power Harvesting Applications
,” ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, September 16–18.
31.
Haldar
,
K.
,
Kiefer
,
B.
, and
Lagoudas
,
D.
,
2011
, “
Finite Element Analysis of the Demagnetization Effect and Stress Inhomogeneities in Magnetic Shape Memory Alloy Samples
,”
Philos. Mag.
,
91
, pp.
4126
4157
.10.1080/14786435.2011.602031
32.
Aharoni
,
A.
,
1998
, “
Demagnetizing Factors for Rectangular Ferromagnetic Prisms
,”
J. Appl. Phys.
,
83
, pp. 3432–3434.10.1063/1.367113
33.
Bruno
,
N. M.
,
Ciocanel
,
C.
,
Feigenbaum
,
H. P.
, and
Waldauer
,
A.
,
2012
, “
A Theoretical and Experimental Investigation of Power Harvesting Using the NiMnGa Martensite Reorientation Mechanism
,”
Smart Mater. Struct.
,
21
, p. 094018.10.1088/0964-1726/21/9/094018
34.
Karaman
,
I.
,
Basaran
,
B.
,
Karaca
,
H. E.
,
Karsilayan
,
A. I.
, and
Chumlyakov
,
Y. I.
,
2007
, “
Energy Harvesting Using Martensite Variant Reorientation Mechanism in a NiMnGa Magnetic Shape Memory Alloy
,”
Applied Physics Letters
,
90
, p. 172505.10.1063/1.2721143
You do not currently have access to this content.