Most composites exhibit a damping figure of merit, a crucial index of a material's dynamic behavior, lower than the value predicted by the Hashin–Shtrikman bound. This work found that the biomimetic hierarchical staggered composites inspired by bone structure can have a damping figure of merit tens of times higher than the Hashin–Shtrikman composite. The optimum state is achieved when the hard and soft phases contribute equally to the overall stiffness of the composite in the direction parallel to the platelets. At this optimal point, the model predicts that the overall stiffness is half the Voigt bound while the damping loss factor is half that of the soft phase. This behavior stems from a deformation mechanism transition from soft-phase-dominant to hard-phase-dominant as the platelet's aspect ratio increases. The findings from this study may have important implications in the future design of composites to mitigate vibration and absorb shock in load-bearing structures.

References

1.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University
,
New York
.
2.
Lakes
,
R.
,
2002
, “
High Damping Composite Materials: Effect of Structural Hierarchy
,”
J. Compos. Mater.
,
36
(
3
), pp.
287
297
.10.1177/0021998302036003538
3.
Smith
,
R.
, Jr.
, and
Keiper
,
D.
,
1965
, “
Dynamic Measurement of Viscoelastic Properties of Bone
,”
Am. J. Med. Electron.
,
4
(
4
), pp.
156
160
.
4.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
,
1993
, “
Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
(
2
), pp.
111
119
.10.1016/0021-9290(93)90042-D
5.
Rho
,
J.-Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1997
, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
,
18
(
20
), pp.
1325
1330
.10.1016/S0142-9612(97)00073-2
6.
Zhang
,
Z.
,
Zhang
,
Y.-W.
, and
Gao
,
H.
,
2011
, “
On Optimal Hierarchy of Load-Bearing Biological Materials
,”
Proc. R. Soc. London B
,
278
(
1705
), pp.
519
525
.10.1098/rspb.2010.1093
7.
Mano
,
J. F.
,
2005
, “
Viscoelastic Properties of Bone: Mechanical Spectroscopy Studies on a Chicken Model
,”
Mater. Sci. Eng.
, C,
25
(
2
), pp.
145
152
.10.1016/j.msec.2005.01.017
8.
Lakes
,
R.
,
2001
, “
Viscoelastic Properties of Cortical Bone
,”
Bone Mechanics Handbook
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, Chap. 11.
9.
Abdel-Wahab
,
A. A.
,
Alam
,
K.
, and
Silberschmidt
,
V. V.
,
2011
, “
Analysis of Anisotropic Viscoelastoplastic Properties of Cortical Bone Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
5
), pp.
807
820
.10.1016/j.jmbbm.2010.10.001
10.
Yamashita
,
J.
,
Furman
,
B. R.
,
Rawls
,
H. R.
,
Wang
,
X.
, and
Agrawal
,
C.
,
2001
, “
The Use of Dynamic Mechanical Analysis to Assess the Viscoelastic Properties of Human Cortical Bone
,”
J. Biomed. Mater. Res.
,
58
(
1
), pp.
47
53
.10.1002/1097-4636(2001)58:1<47::AID-JBM70>3.0.CO;2-U
11.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.10.1016/j.jmps.2004.03.006
12.
Bonfield
,
W.
, and
Grynpas
,
M.
,
1977
, “
Anisotropy of the Young's Modulus of Bone
,”
Nature
,
270
(
5636
), pp.
453
454
.10.1038/270453a0
13.
Jäger
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
.10.1016/S0006-3495(00)76426-5
14.
Kotha
,
S.
,
Kotha
,
S.
, and
Guzelsu
,
N.
,
2000
, “
A Shear-Lag Model to Account for Interaction Effects Between Inclusions in Composites Reinforced With Rectangular Platelets
,”
Compos. Sci. Technol.
,
60
(
11
), pp.
2147
2158
.10.1016/S0266-3538(00)00114-7
15.
Kotha
,
S.
,
Li
,
Y.
, and
Guzelsu
,
N.
,
2001
, “
Micromechanical Model of Nacre Tested in Tension
,”
J. Mater. Sci.
,
36
(
8
), pp.
2001
2007
.10.1023/A:1017526830874
16.
McKittrick
,
J.
,
Chen
,
P.-Y.
,
Tombolato
,
L.
,
Novitskaya
,
E.
,
Trim
,
M.
,
Hirata
,
G.
,
Olevsky
,
E.
,
Horstemeyer
,
M.
, and
Meyers
,
M.
,
2010
, “
Energy Absorbent Natural Materials and Bioinspired Design Strategies: A Review
,”
Mater. Sci. Eng.
, C,
30
(
3
), pp.
331
342
.10.1016/j.msec.2010.01.011
17.
Meyers
,
M. A.
,
McKittrick
,
J.
, and
Chen
,
P.-Y.
,
2013
, “
Structural Biological Materials: Critical Mechanics-Materials Connections
,”
Science
,
339
(
6121
), pp.
773
779
.10.1126/science.1220854
18.
Zhang
,
Z.
,
Liu
,
B.
,
Huang
,
Y.
,
Hwang
,
K.
, and
Gao
,
H.
,
2010
, “
Mechanical Properties of Unidirectional Nanocomposites With Non-Uniformly or Randomly Staggered Platelet Distribution
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1646
1660
.10.1016/j.jmps.2010.07.004
19.
Barthelat
,
F.
, and
Rabiei
,
R.
,
2011
, “
Toughness Amplification in Natural Composites
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
829
840
.10.1016/j.jmps.2011.01.001
20.
Christensen
,
R.
,
1982
, Theory of Viscoelasticity: An Introduction, Academic Press, New York.
21.
Gao
,
H.
,
2006
, “
Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-Like Materials
,”
Int. J. Fract.
,
138
, pp.
101
137
.10.1007/s10704-006-7156-4
22.
Bosia
,
F.
,
Abdalrahman
,
T.
, and
Pugno
,
N. M.
,
2012
, “
Investigating the Role of Hierarchy on the Strength of Composite Materials: Evidence of a Crucial Synergy Between Hierarchy and Material Mixing
,”
Nanoscale
,
4
(
4
), pp.
1200
1207
.10.1039/c2nr11664b
23.
Bechtle
,
S.
,
Ang
,
S. F.
, and
Schneider
,
G. A.
,
2010
, “
On the Mechanical Properties of Hierarchically Structured Biological Materials
,”
Biomaterials
,
31
(
25
), pp.
6378
6385
.10.1016/j.biomaterials.2010.05.044
24.
Chen
,
P.-Y.
,
McKittrick
,
J.
, and
Meyers
,
M. A.
,
2012
, “
Biological Materials: Functional Adaptations and Bioinspired Designs
,”
Prog. Mater. Sci.
,
57
(
8
), pp.
1492
1704
.10.1016/j.pmatsci.2012.03.001
25.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature's Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.10.1016/j.pmatsci.2007.06.001
26.
Launey
,
M. E.
,
Buehler
,
M. J.
, and
Ritchie
,
R. O.
,
2010
, “
On the Mechanistic Origins of Toughness in Bone
,”
Annu. Rev. Mater. Res.
,
40
, pp.
25
53
.10.1146/annurev-matsci-070909-104427
27.
Zhang
,
P.
, and
To
,
A. C.
,
2013
, “
Broadband Wave Filtering in Bioinspired Hierarchical Phononic Crystal
,”
Appl. Phys. Lett.
,
102
, p.
121910
.10.1063/1.4799171
28.
Wang
,
R.
,
Suo
,
Z.
,
Evans
,
A.
,
Yao
,
N.
, and
Aksay
,
I.
,
2001
, “
Deformation Mechanisms in Nacre
,”
J. Mater. Res
,
16
(
9
), pp.
2485
2493
.10.1557/JMR.2001.0340
29.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci.
,
100
(
10
), pp.
5597
5600
.10.1073/pnas.0631609100
30.
Liu
,
G.
,
Ji
,
B.
,
Hwang
,
K.-C.
, and
Khoo
,
B. C.
,
2011
, “
Analytical Solutions of the Displacement and Stress Fields of the Nanocomposite Structure of Biological Materials
,”
Compos. Sci. Technol.
,
71
(
9
), pp.
1190
1195
.10.1016/j.compscitech.2011.03.011
You do not currently have access to this content.