This paper revisits Gurson's (Gurson, A., 1975, “Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth, and Interaction,” Ph.D. thesis, Brown University, Rhode Island; Gurson, 1977, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,” ASME J. Eng. Mater. Technol., 99, pp. 2–15) classical limit-analysis of a hollow sphere made of some ideal-plastic von Mises material and subjected to conditions of homogeneous boundary strain rate (Mandel (Mandel, J., 1964, “Contribution Theorique a l'Etude de l'Ecrouissage et des Lois d'Ecoulement Plastique,” Proceedings of the 11th International Congress on Applied Mechanics, Springer, New York, pp. 502–509) and Hill (Hill, R., 1967, “The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals,” J. Mech. Phys. Solids, 15, pp. 79–95)). Special emphasis is placed on successive approximations of the overall dissipation, based on a Taylor expansion of one term appearing in the integral defining it. Gurson considered only the approximation based on the first-order expansion, leading to his well-known homogenized criterion; higher-order approximations are considered here. The most important result is that the correction brought by the second-order approximation to the first-order one is significant for the porosity rate, if not for the overall yield criterion. This bears notable consequences upon the prediction of ductile damage under certain conditions.

References

References
1.
Gurson
,
A.
,
1975
, “
Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth, and Interaction
,” Ph.D. thesis, Brown University, Providence, RI.
2.
Gurson
,
A.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
3.
Mandel
,
J.
,
1964
, “
Contribution Theorique a l'Etude de l'Ecrouissage et des Lois d'Ecoulement Plastique
,”
Proceedings of the 11th International Congress on Applied Mechanics
,
Springer
,
New York
, pp.
502
509
.
4.
Hill
,
R.
,
1967
, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
15
, pp.
79
95
.10.1016/0022-5096(67)90018-X
5.
Rice
,
J.
, and
Tracey
,
D.
,
1969
, “
On the Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
, pp.
201
217
.10.1016/0022-5096(69)90033-7
6.
Garajeu
,
M.
,
1995
, “
Contribution a l'Etude du Comportement Non Lineaire de Milieux Poreux Avec ou Sans Renfort
,” Ph.D. thesis, Universite d'Aix-Marseille 2, Marseille, France.
7.
Monchiet
,
V.
,
Charkaluk
,
E.
, and
Kondo
,
D.
,
2011
, “
A Micromechanics-Based Modification of the Gurson Criterion by Using Eshelby-Like Velocity Fields
,”
Eur. J. Mech. A/Solids
,
30
, pp.
940
949
.10.1016/j.euromechsol.2011.05.008
8.
Alves
,
J.
,
Cazacu
,
O.
, and
Revil-Baudard
,
B.
,
2013
, “
New Criterion Describing Combined Effects of Lode Angle and Sign of Pressure on Yielding and Void Evolution
,”
Proceedings of IDDRG 2013
, Zurich, Switzerland, June 2–5,
P.
Hora
, ed.,
ETH Zurich
, Zurich, Switzerland, pp.
169
174
.
9.
Cazacu
,
O.
,
Revil-Baudard
,
B.
,
Lebensohn
,
R.
, and
Garajeu
,
M.
,
2013
, “
On the Combined Effect of Pressure and Third Invariant on Yielding of Porous Solids With von Mises Matrix
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
064501
.10.1115/1.4024074
10.
Huang
,
Y.
,
1991
, “
Accurate Dilatation Rates for Spherical Voids in Triaxial Stress Fields
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
1084
1086
.10.1115/1.2897686
11.
Benzerga
,
A.
, and
Leblond
,
J.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.
12.
Gologanu
,
M.
,
Leblond
,
J.
, and
Devaux
,
J.
,
1993
, “
Approximate Models for Ductile Metals Containing Non-Spherical Voids—Case of Axisymmetric Prolate Ellipsoidal Cavities,
J. Mech. Phys. Solids
,
41
, pp.
1723
1754
.10.1016/0022-5096(93)90029-F
13.
Madou
,
K.
, and
Leblond
,
J.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids—II: Determination of Yield Criterion Parameters
,”
J. Mech. Phys. Solids
,
60
, pp.
1037
1058
.10.1016/j.jmps.2012.01.010
14.
Madou
,
K.
, and
Leblond
,
J.
,
2013
, “
Numerical Studies of Porous Ductile Materials Containing Arbitrary Ellipsoidal Voids—I: Yield Surfaces of Representative Cells
,”
Eur. J. Mech. A/Solids
,
42
, pp.
480
489
.10.1016/j.euromechsol.2013.06.004
15.
Gologanu
,
M.
,
1997
, “
Etude de Quelques Problemes de Rupture Ductile des Metaux
,” Ph.D. thesis, Universite Paris 6, Paris.
16.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
, pp.
157
169
.10.1016/0001-6160(84)90213-X
17.
Tvergaard
,
V.
,
1981
, “
lnfluence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
, pp.
389
407
.10.1007/BF00036191
18.
Sovik
,
O.
, and
Thaulow
,
C.
,
1997
, “
Growth of Spheroidal Voids in Elastic-Plastic Solids
,”
Fatigue Fract. Eng. Mater. Struct.
,
20
, pp.
1731
1744
.10.1111/j.1460-2695.1997.tb01525.x
19.
Pardoen
,
T.
, and
Hutchinson
,
J.
,
2000
, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
, pp.
2467
2512
.10.1016/S0022-5096(00)00019-3
20.
Molinari
,
A.
, and
Mercier
,
S.
,
2001
, “
Micromechanical Modelling of Porous Materials Under Dynamic Loading
,”
J. Mech. Phys. Solids
,
49
, pp.
1497
1516
.10.1016/S0022-5096(01)00003-5
You do not currently have access to this content.