Multibody distributed dynamic systems are seen in many engineering applications. Developed in this investigation is a new analytical method for a class of branched multibody distributed systems, which is called the augmented distributed transfer function (DTFM). This method adopts an augmented state formulation to describe the interactions among multiple distributed and lumped bodies, which resolves the problems with conventional transfer function methods in modeling and analysis of multibody distributed systems. As can be seen, the augmented DTFM, without the need for orthogonal system eigenfunctions, produces exact and closed-form solutions of various dynamic problems, in both frequency and time domains.

References

References
1.
Prestel
,
E. C.
, and
Leckie
,
F. A.
,
1963
,
Matrix Methods in Elastomechanics
,
McGraw-Hill
,
New York
.
2.
Dowell
,
E. H.
,
1972
, “
Free Vibration of an Arbitrary Structure in Terms of Component Modes
,”
ASME J. Appl. Mech.
,
39
, pp.
727
732
.10.1115/1.3422780
3.
Hallquist
,
J.
, and
Snyder
,
V. W.
,
1973
, “
Linear Damped Vibratory Structures With Arbitrary Support Conditions
,”
ASME J. Appl. Mech.
,
40
, pp.
312
313
.10.1115/1.3422956
4.
Mead
,
D. J.
,
1971
, “
Vibration Response and Wave Propagation in Periodic Structures
,”
ASME J. Eng. Ind.
,
93
(
3
), pp.
783
792
.10.1115/1.3428014
5.
Mead
,
D. J.
, and
Yaman
,
Y.
,
1990
, “
The Harmonic Response of Uniform Beams on Multiple Linear Supports: A Flexural Wave Analysis
,”
J. Sound Vib.
,
141
, pp.
465
484
.10.1016/0022-460X(90)90639-H
6.
Bergman
,
L. A.
, and
Nicholson
,
J. W.
,
1985
, “
Forced Vibration of a Damped Combined Linear System
,”
ASME J. Vib. Acoust. Stress Reliability
,
107
(
3
), pp.
275
281
.10.1115/1.3269257
7.
Doyle
,
J. F.
,
1997
,
Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms
,
2nd ed.
,
Springer
,
New York
.
8.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
John Wiley and Sons
,
Singapore
.
9.
Kelly
,
S. G.
, and
Srinivas
,
S.
,
2009
, “
Free Vibrations of Elastically Connected Stretched Beams
,”
J. Sound Vib.
,
326
, pp.
883
893
.10.1016/j.jsv.2009.06.004
10.
Butkoviskiy
,
A. G.
,
1983
,
Structural Theory of Distributed Systems
,
Halsted, John Wiley and Sons
,
New York
.
11.
Yang
,
B.
, and
Tan
,
C. A.
,
1992
, “
Transfer Functions of One-Dimensional Distributed Parameter Systems
,”
ASME J. Appl. Mech.
,
59
, pp.
1009
1014
.10.1115/1.2894015
12.
Yang
,
B.
,
1994
, “
Distributed Transfer Function Analysis of Complex Distributed Parameter Systems
,”
ASME J. Appl. Mech.
,
61
, pp.
84
92
.10.1115/1.2901426
13.
Yang
,
B.
,
2005
,
Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes
,
Elsevier Science
,
Boston
.
14.
Yang
,
B.
,
2010
, “
Exact Transient Vibration of Stepped Bars, Shafts and Strings Carrying Lumped Masses
,”
J. Sound Vib.
,
329
, pp.
1191
1207
.10.1016/j.jsv.2009.10.035
15.
Yang
,
B.
, and
Noh
,
K.
,
2012
, “
Exact Transient Vibration of Non-Uniform Bars, Shafts and Strings Governed by Wave Equations
”,
Int. J. Struct. Stability Dyn.
,
12
(
4
), p.
1250022
.10.1142/S0219455412500228
16.
Yang
,
B.
, and
Mote
,
C.D.
, Jr.
,
1991
, “
Frequency–Domain Vibration Control of Distributed Gyroscopic Systems
,”
ASME J. Dyn. Syst. Measure. Control
,
113
(
1
), pp.
18
25
.10.1115/1.2896350
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.