The contact problem of a rigid conical frustum indenting a transversely isotropic elastic half-space is analytically solved using a displacement method and a stress method, respectively. The displacement method makes use of two potential functions, while the stress method employs one potential function. In both the methods, Hankel's transforms are applied to construct potential functions, and the associated dual integral equations of Titchmarsh's type are analytically solved. The solution obtained using each method gives analytical expressions of the stress and displacement components on the surface of the half-space. These two sets of expressions are seen to be equivalent, thereby confirming the uniqueness of the elasticity solution. The newly derived solution is reduced to the closed-form solution for the contact problem of a conical punch indenting a transversely isotropic elastic half-space. In addition, the closed-form solution for the problem of a flat-end cylindrical indenter punching a transversely isotropic elastic half-space is obtained as a special case. To illustrate the new solution, numerical results are provided for different half-space materials and punch parameters and are compared to those based on the two specific solutions for the conical and cylindrical indentation problems. It is found that the indentation deformation increases with the decrease of the cone angle of the frustum indenter. Moreover, the largest deformation in the half-space is seen to be induced by a conical indenter, followed by a cylindrical indenter and then by a frustum indenter. In addition, the axial force–indentation depth relation is shown to be linear for the frustum indentation, which is similar to that exhibited by both the conical and cylindrical indentations—two limiting cases of the former.

References

References
1.
Spencer
,
A. J. M.
,
1972
,
Deformations of Fibre-Reinforced Materials
,
Oxford University Press
,
Oxford, UK
.
2.
Dong
,
X. N.
,
Zhang
,
X.
,
Huang
,
Y.
, and
Guo
,
X. E.
,
2005
, “
A Generalized Self-Consistent Estimate for the Effective Elastic Moduli of Fiber-Reinforced Composite Materials With Multiple Transversely Isotropic Inclusions
,”
Int. J. Mech. Sci.
,
47
, pp.
922
940
.10.1016/j.ijmecsci.2005.01.008
3.
Ning
,
X.
,
Zhu
,
Q.
,
Lanir
,
Y.
, and
Margulies
,
S. S.
,
2006
, “
A Transversely Isotropic Viscoelastic Constitutive Equation for Brainstem Undergoing Finite Deformation
,”
ASME J. Biomech. Eng.
,
128
, pp.
925
933
.10.1115/1.2354208
4.
Liu
,
M.
, and
Yang
,
F. Q.
,
2012
, “
Finite Element Analysis of the Spherical Indentation of Transversely Isotropic Piezoelectric Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
, p.
045019
.10.1088/0965-0393/20/4/045019
5.
Chen
,
S.
,
Yan
,
C.
, and
Soh
,
A.
,
2008
, “
Non-Slipping JKR Model for Transversely Isotropic Materials
,”
Int. J. Solids Struct.
,
45
, pp.
676
687
.10.1016/j.ijsolstr.2007.08.013
6.
Guo
,
X.
, and
Jin
,
F.
,
2009
, “
A Generalized JKR-Model for Two-Dimensional Adhesive Contact of Transversely Isotropic Piezoelectric Half-Space
,”
Int. J. Solids Struct.
,
46
, pp.
3607
3619
.10.1016/j.ijsolstr.2009.06.012
7.
Elliott
,
H. A.
,
1949
, “
Axial Symmetric Stress Distributions in Aeolotropic Hexagonal Crystals. The Problem of the Plane and Related Problems
,”
Math. Proc. Cambridge Philos. Soc.
,
45
, pp.
621
630
.10.1017/S0305004100025305
8.
Elliott
,
H. A.
,
1948
, “
Three-Dimensional Stress Distributions in Hexagonal Aeolotropic Crystals
,”
Math. Proc. Cambridge Philos. Soc.
,
44
, pp.
522
533
.10.1017/S0305004100024531
9.
Shield
,
R. T.
,
1951
, “
Notes on Problems in Hexagonal Aeolotropic Materials
,”
Math. Proc. Cambridge Philos. Soc.
,
47
, pp.
401
409
.10.1017/S0305004100026748
10.
Green
,
A. E.
, and
Zerna
,
W.
,
1968
,
Theoretical Elasticity
,
2nd ed.
,
Oxford University Press
,
Oxford, UK
.
11.
Lodge
,
A. S.
,
1955
, “
The Transformation to Isotropic Form of the Equilibrium Equations for a Class of Anisotropic Elastic Solids
,”
Q. J. Mech. Appl. Math.
,
8
, pp.
211
225
.10.1093/qjmam/8.2.211
12.
Okumura
,
I. A.
,
1987
, “
Generalization of Elliott's Solution to Transversely Isotropic Solids and its Application
,”
Struct. Eng./Earthquake Eng.
,
4
, pp.
185
195
.
13.
Wang
,
M. Z.
, and
Wang
,
W.
,
1995
, “
Completeness and Nonuniqueness of General Solutions of Transversely Isotropic Elasticity
,”
Int. J. Solids Struct.
,
32
, pp.
501
513
.10.1016/0020-7683(94)00114-C
14.
Wang
,
W.
, and
Shi
,
M. X.
,
1998
, “
On the General Solutions of Transversely Isotropic Elasticity
,”
Int. J. Solids Struct.
,
35
, pp.
3283
3297
.10.1016/S0020-7683(97)00229-1
15.
Eubanks
,
R. A.
, and
Sternberg
,
E.
,
1954
, “
On the Axisymmetric Problem of Elasticity Theory for a Medium with Transverse Isotropy
,”
J. Rat. Mech. Anal.
,
3
, pp.
89
101
.
16.
Wang
,
M. Z.
,
Xu
,
B. X.
, and
Gao
,
C. F.
,
2008
, “
Recent General Solutions in Linear Elasticity and Their Applications
,”
ASME Appl. Mech. Rev.
,
61
, p.
030803
.10.1115/1.2909607
17.
Lekhnitskii
,
S. G.
,
1940
, “
Symmetrical Deformation and Torsion of a Body of Revolution With Anisotropy of a Special Form
,”
Prikl. Mat. Mekh.
,
4
, pp.
43
60
.
18.
Lekhnitskii
,
S. G.
,
1981
,
Theory of Elasticity of an Anisotropic Body
,
Mir
,
Moscow
.
19.
Hu
,
H.-C.
,
1953
, “
On the Three-Dimensional Problems of the Theory of Elasticity of a Transversely Isotropic Body
,”
Acta Sci. Sin.
,
2
(
2
), pp.
145
151
.
20.
Nowacki
,
W.
,
1954
, “
The Stress Function in Three-Dimensional Problems Concerning an Elastic Body Characterized by Transverse Isotropy
,”
Bull. Acad. Pol. Sci.
,
2
(
1
), pp.
21
25
.
21.
Ding
,
H.-J.
,
Chen
,
W. Q.
, and
Zhang
,
L.
,
2006
,
Elasticity of Transversely Isotropic Materials
,
Springer
,
Dordrecht, The Netherlands
.
22.
Hong
,
J. M.
,
Ozkeskin
,
F. M.
, and
Zou
,
J.
,
2008
, “
A Micromachined Elastomeric Tip Array for Contact Printing with Variable Dot Size and Density
,”
J. Micromech. Microeng.
18
, p.
015003
.10.1088/0960-1317/18/1/015003
23.
Zhou
,
S.-S.
,
Gao
,
X.-L.
, and
He
,
Q.-C.
,
2011
, “
A Unified Treatment of Axisymmetric Adhesive Contact Problems Using the Harmonic Potential Function Method
,”
J. Mech. Phys. Solids
,
59
, pp.
145
159
.10.1016/j.jmps.2010.11.006
24.
Ejike
,
U. B. C. O.
,
1981
, “
The Stress on an Elastic Half-Space Due to Sectionally Smooth-Ended Punch
,”
J. Elast.
,
11
, pp.
395
402
.10.1007/BF00058081
25.
Lai
,
W. M.
,
Rubin
,
D.
, and
Krempl
,
E.
,
2010
,
Introduction to Continuum Mechanics
,
4th ed.
,
Elsevier
,
Burlington, MA
.
26.
Zhou
,
S.-S.
, and
Gao
,
X.-L.
,
2013
, “
Solutions of Half-Space and Half-Plane Contact Problems Based on Surface Elasticity
,”
Z. Angew. Math. Phys.
,
64
, pp.
145
166
.10.1007/s00033-012-0205-0
27.
Titchmarsh
,
E. C.
,
1937
,
An Introduction to the Theory of Fourier Integrals
,
Oxford University Press
,
Oxford, UK
.
28.
Busbridge
,
I. W.
,
1938
, “
Dual Integral Equations
,”
Proc. Lond. Math. Soc.
,
44
, pp.
115
130
.10.1112/plms/s2-44.2.115
29.
Harding
,
J. W.
, and
Sneddon
,
I. N.
,
1945
, “
The Elastic Stresses Produced by the Indentation of the Plane Surface of a Semi-Infinite Elastic Solid by a Rigid Punch
,”
Math. Proc. Cambridge Philos. Soc.
,
41
, pp.
16
26
.10.1017/S0305004100022325
30.
Ding
,
H.-J.
, and
Xu
,
B.-H.
,
1988
, “
General Solutions of Axisymmetric Problems in Transversely Isotropic Body
,”
Appl. Math. Mech.
,
9
(
2
), pp.
143
151
.10.1007/BF02456010
31.
Bodunov
,
N. M.
, and
Druzhinin
,
G. V.
,
2009
, “
One Solution of an Axisymmetric Problem of the Elasticity Theory for a Transversely Isotropic Material
,”
J. Appl. Mech. Technol. Phys.
,
50
, pp.
982
988
.10.1007/s10808-009-0132-9
32.
Gao
,
X.-L.
, and
Zhou
,
S.-S.
,
2013
, “
Strain Gradient Solutions of Half-Space and Half-Plane Contact Problems
,”
Z. Angew. Math. Phys.
,
64
, pp.
1363
1386
.10.1007/s00033-012-0273-1
33.
Sneddon
,
I. N.
,
1965
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
3
, pp.
47
57
.10.1016/0020-7225(65)90019-4
34.
Hanson
,
M. T.
,
1992
, “
The Elastic Field for Conical Indentation Including Sliding Friction for Transverse Isotropy
,”
ASME J. Appl. Mech.
,
59
, pp.
S123
S130
.10.1115/1.2899476
35.
Liu
,
Y.
,
He
,
Y.
,
Chu
,
F.
,
Mitchell
,
T. E.
, and
Wadley
,
H. N. G.
,
1997
, “
Elastic Properties of Laminated Calcium Aluminosilicate/Silicon Carbide Composites Determined by Resonant Ultrasound Spectroscopy
,”
J. Am. Ceram. Soc.
,
80
, pp.
142
148
.10.1111/j.1151-2916.1997.tb02802.x
36.
Behrens
,
E.
,
1971
, “
Elasic Constants of Fiber-Reinforced Composites With Transversely Isotropic Constituents
,”
ASME J. Appl. Mech.
,
38
, pp.
1062
1065
.10.1115/1.3408918
37.
Danyluk
,
H. T.
,
Singh
,
B. M.
, and
Vrbik
,
J.
,
1991
, “
Ductile Penny-Shaped Crack in a Transversely Isotropic Cylinder
,”
Int. J. Fract.
,
51
, pp.
331
342
.10.1007/BF00012927
You do not currently have access to this content.