A finite element analysis of quasi-static, steady-state crack growth in pseudoelastic shape memory alloys is carried out for plane strain, mode I loading. The crack is assumed to propagate at a critical level of the crack-tip energy release rate. Results pertaining to the influence of forward and reverse phase transformation on the near-tip mechanical fields and fracture toughness are presented for a range of thermomechanical parameters and temperature. The fracture toughness is obtained as the ratio of the far-field applied energy release rate to the crack-tip energy release rate. A substantial fracture toughening is observed, in accordance with experimental observations, associated with the energy dissipated by the transformed material in the wake of the growing crack. Reverse phase transformation, being a dissipative process itself, is found to increase the levels of toughness enhancement. However, higher nominal temperatures tend to reduce the toughening of an SMA alloy—although the material's tendency to reverse transform in the wake of the advancing crack tip increases—due to the higher stress levels required for initiation of forward transformation.

References

1.
Lagoudas
,
D.
, ed,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer-Verlag
,
New York
.
2.
Lexcellent
,
C.
,
2013
,
Shape Memory Alloys Handbook
,
Wiley-Blackwell
,
New York
.
3.
Miyazaki
,
S.
,
1990
,
Engineering Aspects of Shape Memory Alloys
,
Butterworth-Heinemann
,
London
.
4.
Otsuka
,
K.
, and
Wayman
,
C.
, eds.,
1999
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
.
5.
Morgan
,
N.
,
2004
, “
Medical Shape Memory Alloy Applications—The Market and its Products
,”
Mater. Sci. Eng. A
,
378
, pp.
16
23
.10.1016/j.msea.2003.10.326
6.
Robertson
,
S.
,
Metha
,
A.
,
Pelton
,
A.
, and
Ritchie
,
R.
,
2007
, “
Evolution of Crack-Tip Transformation Zones in Superelastic Nitinol Subjected to In Situ Fatigue: A Fracture Mechanics and Synchrotron X-Ray Micro-Diffraction Analysis
,”
Acta Mater.
,
55
, pp.
6198
6207
.10.1016/j.actamat.2007.07.028
7.
Gollerthan
,
S.
,
Young
,
M.
,
Baruj
,
A.
,
Frenzel
,
J.
,
Schmahl
,
W.
, and
Eggeler
,
G.
,
2009
, “
Fracture Mechanics and Microstructure in NiTi Shape Memory Alloys
,”
Acta Mater
,
57
, pp.
1015
1025
.10.1016/j.actamat.2008.10.055
8.
Creuziger
,
A.
,
Bartol
,
L.
,
Gall
,
K.
, and
Crone
,
W.
,
2008
, “
Fracture in Single Crystal NiTi
,”
J. Mech. Phys. Solids
,
56
, pp.
2896
2905
.10.1016/j.jmps.2008.04.002
9.
Robertson
,
S.
, and
Ritchie
,
R.
,
2007
, “
In Vitro Fatigue-Crack Growth and Fracture Toughness Behavior of Thin-Walled Superelastic Nitinol Tube for Endovascular Stents: A Basis for Defining the Effect of Crack-Like Defects
,”
Biomaterials
,
28
, pp.
700
709
.10.1016/j.biomaterials.2006.09.034
10.
Baxevanis
,
T.
,
Chemisky
,
Y.
, and
Lagoudas
,
D.
,
2012
, “
Finite Element Analysis of the Plane-Strain Crack-Tip Mechanical Fields in Pseudoelastic Shape Memory Alloys
,”
Smart Mater. Struct.
,
21
(
9
), p.
094012
.10.1088/0964-1726/21/9/094012
11.
Gall
,
K.
,
Yang
,
N.
,
Sehitoglu
,
H.
, and
Chumlyakov
,
Y.
,
1998
, “
Fracture of Precipitated NiTi Shape Memory Alloys
,”
Int. J. Fract.
,
109
, pp.
189
207
.10.1023/A:1011069204123
12.
Yi
,
S.
, and
Gao
,
S.
,
2000
, “
Fracture Toughening Mechanism of Shape Memory Alloys Due to Martensite Transformation
,”
Int. J. Solids Struct.
,
37
, pp.
5315
5327
.10.1016/S0020-7683(99)00213-9
13.
Yi
,
S.
,
Gao
,
S.
, and
Shen
,
S.
,
2001
, “
Fracture Toughening Mechanism of Shape Memory Alloys Under Mixed-Mode Loading Due to Martensite Transformation
,”
Int. J. Solids Struct.
,
38
, pp.
4463
4476
.10.1016/S0020-7683(00)00283-3
14.
Yan
,
W.
, and
Mai
,
Y.
,
2006
,
Theoretical Consideration on the Fracture of Shape Memory Alloys
, Vol.
127
,
Springer
,
New York
, pp.
217
226
.
15.
McMeeking
,
R.
, and
Evans
,
A.
,
1982
, “
Mechanics of Transformation-Toughening in Brittle Materials
,”
J. Am. Ceram. Soc.
,
65
, pp.
242
246
.10.1111/j.1151-2916.1982.tb10426.x
16.
Budniansky
,
B.
,
Hutchinson
,
J.
, and
Lambropoulos
,
J.
,
1983
, “
Continuum Theory of Dilatant Transformation Toughening in Ceramics
,”
Int. J. Solids Struct.
,
19
, pp.
337
355
.10.1016/0020-7683(83)90031-8
17.
Stam
,
G.
, and
van der Giessen
,
E.
,
1995
, “
Effect of Reversible Phase Transformations on Crack Growth
,”
Mech. Mater.
,
21
, pp.
51
71
.10.1016/0167-6636(94)00074-3
18.
Sun
,
Q.
,
Hwang
,
K.
, and
Yu
,
S.
,
1991
, “
A Micromechanics Constitutive Model of Transformation Plasticity With Shear and Dilatation Effect
,”
J. Mech. Phys. Solids
,
39
, pp.
507
524
.10.1016/0022-5096(91)90038-P
19.
Lambropoulos
,
J.
,
1986
, “
Shear, Shape and Orientation Effects in Transformation Toughening
,”
Int. J. Solids Struct.
,
22
, pp.
1083
1106
.10.1016/0020-7683(86)90019-3
20.
Freed
,
Y.
, and
Banks-Sills
,
L.
,
2007
, “
Crack Growth Resistance of Shape Memory Alloys by Means of a Cohesive Zone Model
,”
J. Mech. Phys. Solids
,
55
, pp.
2157
2180
.10.1016/j.jmps.2007.03.002
21.
Panoskaltsis
,
V.
,
Bahuguna
,
S.
, and
Soldatos
,
D.
,
2004
, “
On the Thermomechanical Modeling of Shape Memory Alloys
,”
Int. J. Nonlinear Mech.
,
39
, pp.
709
722
.10.1016/S0020-7462(03)00022-2
22.
Baxevanis
,
T.
,
Parrinello
,
A.
, and
Lagoudas
,
D.
,
2013
, “
On the Fracture Toughness Enhancement Due to Stress-Induced Phase Transformation in Shape Memory Alloys
,”
Int. J. Plast.
,
50
, pp.
158
169
.10.1016/j.ijplas.2013.04.007
23.
Boyd
,
J.
, and
Lagoudas
,
D.
,
1996
, “
A Thermodynamical Constitutive Model for Shape Memory Materials. Part I. The Monolithic Shape Memory Alloy
,”
Int. J. Plast.
,
12
(
6
), pp.
805
842
.10.1016/S0749-6419(96)00030-7
24.
Bouvet
,
C.
,
Calloch
,
S.
, and
Lexcellent
,
C.
,
2004
, “
A Phenomenological Model for Pseudoelasticity of Shape Memory Alloys Under Multiaxial Proportional and Nonproportional Loadings
,”
Eur. J. Mech., A/Solids
,
23
(
1
), pp.
37
61
.10.1016/j.euromechsol.2003.09.005
25.
Rice
,
J.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.10.1115/1.3601206
26.
Hutchinson
,
J.
,
1974
, “
On Steady Quasi-Static Crack Growth
,” Harvard University Technical Report No. DEAP S-8.
27.
Dean
,
R.
, and
Hutchinson
,
J.
,
1980
, “
Quasi-Static Steady Crack Growth in Small Scale Yielding
,” ASTM Standard No. ASTM-STP 700.
28.
Landis
,
C. M.
,
2003
, “
On the Fracture Toughness of Ferroelastic Materials
,”
J. Mech. Phys. Solids
,
51
, pp.
1347
1369
.10.1016/S0022-5096(03)00065-6
29.
Wang
,
J.
, and
Landis
,
C.
,
2004
, “
On the Fracture Toughness of Ferroelectric Ceramics With Electric Field Applied Parallel to the Crack Front
,”
Acta Mater.
,
52
, pp.
3435
3446
.10.1016/j.actamat.2004.03.041
30.
Wang
,
J.
, and
Landis
,
C.
,
2006
, “
Domain Switch Toughening in Polycrystalline Ferroelectrics
,”
J. Mater. Res.
,
21
, pp.
13
20
.10.1557/jmr.2006.0002
31.
Wang
,
J.
, and
Landis
,
C.
,
2006
, “
Effects of In-Plane Electric Fields on the Toughening Behavior of Ferroelectric Ceramics
,”
J. Mech. Mater. Struct.
,
1
, pp.
1075
1095
.10.2140/jomms.2006.1.1075
32.
Li
,
F.
,
Shih
,
C.
, and
Needleman
,
A.
,
1985
, “
A Comparison of Methods for Calculating Energy Release Rates
,”
Eng. Fract. Mech
,
21
, pp.
405
421
.10.1016/0013-7944(85)90029-3
33.
Carka
,
D.
,
Mear
,
M.
, and
Landis
,
C.
,
2011
, “
The Dirichlet-to-Neumann Map for Two-Dimensional Crack Problems
,”
Comput. Methods Applied Mech. Eng.
,
200
(
9–12
), pp.
1263
1271
.10.1016/j.cma.2010.10.016
34.
Hartl
,
D.
, and
Lagoudas
,
D.
,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer
,
New York
, pp.
53
119
.
35.
Miyazaki
,
S.
,
Imai
,
T.
,
Igo
,
Y.
, and
Otsuka
,
K.
,
1986
, “
Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys
,”
Metall. Trans. A
,
17A
(
1
), pp.
115
120
.
36.
Yoon
,
S.
, and
Yeo
,
D.
,
2008
, “
Experimental Investigation of Thermo-Mechanical Behaviors in Ni-Ti Shape Memory Alloy
,”
J. Intell. Mater. Syst. Struct.
,
19
(
3
), pp.
283
289
.10.1177/1045389X07083623
You do not currently have access to this content.