The pedestrian-bridge dynamic interaction problem in the vertical direction based on a bipedal walking model and damped compliant legs is presented in this work. The classical finite element method, combined with a moving finite element, represents the motion of the pedestrian in the dynamic analysis of a footbridge. A control force is provided by the pedestrian to compensate for the energy loss due to the system damping in walking and to regulate the walking performance of the pedestrian. The effects of leg stiffness, the landing angle of attack, the damping ratio of the leg and the mass ratio of the human and structure are investigated in the numerical studies. Simulation results show that the dynamic interaction will increase with a larger vibration level of the structure. More external energy must be input to maintain steady walking and uniform dynamic behavior of the pedestrian in the process. The simple bipedal walking model could well describe the human-structure dynamic interaction.

References

References
1.
Ellis
,
B. R.
, and
Ji
,
T.
,
1997
, “
Human–Structure Interaction in Vertical Vibrations
,”
Proc. Inst. Civ. Eng., Struct. Build.
,
122
(
1
), pp.
1
9
.10.1680/istbu.1997.29162
2.
Brownjohn
,
J. M. W.
,
1999
, “
Energy Dissipation in One-Way Slabs With Human Participation
,”
Proceedings of the Asia-Pacific Vibration Conference, Nanyang Technological University
,
Singapore
, December 13-15, pp.
155
160
.
3.
Brownjohn
,
J. M. W.
,
2001
, “
Energy Dissipation From Vibrating Floor Slabs Due to Human–Structure Interaction
,”
Shock Vib.
,
8
(
6
), pp.
315
323
.
4.
Ji
,
T.
,
2003
, “
Understanding the Interactions Between People and Structures
,”
The Struct. Eng.
, July 15, pp.
12
13
. Available at: http://personalpages.manchester.ac.uk/staff/tianjian.ji/research/papers/a3-understandingHSI.pdf
5.
Sachse
,
R.
,
Pavic
,
A.
, and
Reynolds
,
P.
,
2003
, “
Human-Structure Dynamic Interaction in Civil Engineering Dynamics: A Literature Review
,”
Shock Vib. Dig.
,
35
(
1
), pp.
3
18
.10.1177/0583102403035001624
6.
Sachse
,
R.
,
Pavic
,
A.
, and
Reynolds
,
P.
,
2004
, “
Parametric Study of Modal Properties of Damped Two-Degree-of-Freedom Crowd-Structure Dynamic Systems
,”
J. Sound Vib.
,
274
, pp.
461
480
.10.1016/j.jsv.2003.08.052
7.
Dougill
,
J. W.
,
Wright
,
J. R.
,
Parkhouse
,
J. G.
, and
Harrison
,
R. E.
,
2006
, “
Human Structure Interaction During Rhythmic Bobbing
,”
The Struct. Eng.
,
84
(
22
), pp.
32
39
. Available at: http://www.istructe.org/journal/volumes/volume-84-(published-in-2006)/issues/issue-22/articles/human-structure-interaction-during-rhythmic-bobbin
8.
Grundmann
,
H.
,
Kreuzinger
,
H.
, and
Schneider
,
M.
,
1993
, “
Dynamic Calculations of Footbridges
,”
Bauingenieur
,
68
, pp.
215
225
.
9.
Dallard
,
P.
,
Fitzpatrick
,
A. J.
,
Flint
,
A.
,
Le Bourva
,
S.
,
Low
,
A.
,
Ridsdill-Smith
,
R. M.
, and
Willford
,
M.
,
2001
, “
The London Millennium Footbridge
,”
The Struct. Eng.
,
79
(
22
), pp.
17
33
. Available at: http://www.istructe.org/journal/volumes/volume-79-(published-in-2001)/issues/issue-22/articles/the-london-millennium-footbridge
10.
Dallard
,
P.
,
Fitzpatrick
,
A. J.
,
Flint
,
A.
,
Le Bourva
,
S.
,
Low
,
A.
,
Ridsdill-Smith
,
R. M.
, and
Willford
,
M.
,
2001
, “
London Millennium Bridge: Pedestrian-Induced Lateral Vibration
,”
J. Bridge Eng.
,
6
(
6
), pp.
412
417
.10.1061/(ASCE)1084-0702(2001)6:6(412)
11.
Mouring
,
S. E.
, and
Ellingwood
,
B. R.
,
1994
, “
Guidelines to Minimize Floor Vibrations From Building Occupants
,”
J. Struct. Eng.
,
120
(
2
), pp.
507
526
.10.1061/(ASCE)0733-9445(1994)120:2(507)
12.
Brownjohn
,
J. M. W.
,
Pavic
,
A.
, and
Omenzetter
,
P.
,
2004
, “
A Spectral Density Approach for Modeling Continuous Vertical Forces on Pedestrian Structures Due to Walking
,”
Can. J. Civ. Eng.
,
31
(
1
), pp.
65
77
.10.1139/l03-072
13.
Ricciardelli
,
F.
, and
Pizzimenti
,
A. D.
,
2007
, “
Lateral Walking-Induced Forces on Footbridges
,”
J. Bridge Eng.
,
12
(
6
), pp.
677
688
.10.1061/(ASCE)1084-0702(2007)12:6(677)
14.
Sun
,
L.
, and
Yuan
,
X.
,
2008
, “
Study on Pedestrian-Induced Vibration of Footbridge
,”
Proceedings of the Third International Conference on Footbridges 2008
,
Porto, Portugal
, July 2-4.
15.
Piccardo
,
G.
, and
Tubino
,
F.
,
2008
, “
Parametric Resonance of Flexible Footbridges Under Crowd-Induced Lateral Excitation
,”
J. Sound Vib.
,
311
, pp.
353
71
.10.1016/j.jsv.2007.09.008
16.
Ingolfsson
,
E. T.
, and
Georgakis
,
C. T.
,
2011
, “
A Stochastic Load Model for Pedestrian-Induced Lateral Forces on Footbridges
,”
Eng. Struct.
,
33
(
12
), pp.
3454
3470
.10.1016/j.engstruct.2011.07.009
17.
Bruno
,
L.
, and
Venuti
,
F.
,
2009
, “
Crowd-Structure Interaction in Footbridges: Modelling, Application to a Real Case-Study and Sensitivity Analyses
,”
J. Sound Vib.
,
323
, pp.
475
493
.10.1016/j.jsv.2008.12.015
18.
Kim
,
S. H.
,
Cho
,
K.
,
Choi
,
M.
,
Choi
,
M. S.
, and
Lim
,
J. Y.
,
2008
, “
Development of Human Body Model for the Dynamic Analysis of Footbridges Under Pedestrian Induced Excitation
,”
J. Steel Struct.
,
8
, pp.
333–345
.
19.
Archbold
,
P.
,
Keogh
,
J.
,
Caprani
,
C.
, and
Fanning
,
P.
,
2011
, “
A Parametric Study of Pedestrian Vertical Force Models for Dynamic Analysis of Footbridges
,”
Proceedings of the 4th International Conference on Experimental Vibration Analysis for Civil Engineering Structures
,
Varenna, Italy
, October 3-5.
20.
Macdonald
,
J. H. G.
,
2009
, “
Lateral Excitation of Bridges by Balancing Pedestrians
,”
Proc. R. Soc. London, Ser. A
,
465
, pp.
1055
1073
.10.1098/rspa.2008.0367
21.
Carroll
,
S. P.
,
Owen
,
J. S.
, and
Hussein
,
M. F. M.
,
2011
, “
Crowd-Bridge Interaction by Combining Biomechanical and Discrete Element Models
,”
Proceedings of the 8th International Conference on Structural Dynamics
,
Leuven, Belgium
, July 4-6.
22.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behavior Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. London, Ser. B
,
273
, pp.
2861
2867
.10.1098/rspb.2006.3637
23.
Whittington
,
B. R.
, and
Thelen
,
D. G.
,
2009
, “
A Simple Mass-Spring Model With Roller Feet Can Induce the Ground Reactions Observed in Human Walking
,”
ASME J. Biomech. Eng.
,
131
, p.
011013
.10.1115/1.3005147
24.
Kim
,
S.
, and
Park
,
S.
,
2011
, “
Leg Stiffness Increases With Speed to Modulate Gait Frequency and Propulsion Energy
,”
J. Biomech.
,
44
, pp.
1253
1258
.10.1016/j.jbiomech.2011.02.072
25.
Yang
,
Y. B.
,
Chang
,
C. H.
, and
Yau
,
J. D.
,
1999
, “
An Element for Analyzing Vehicle Bridge System Considering Vehicle's Pitching Effect
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
1031
1047
.10.1002/(SICI)1097-0207(19991110)46:7<1031::AID-NME738>3.0.CO;2-V
26.
Yang
,
Y. B.
, and
Wu
,
Y. S.
,
2001
, “
A Versatile Element for Analyzing Vehicle–Bridge Interaction Response
,”
Eng. Struct.
,
23
, pp.
452
469
.10.1016/S0141-0296(00)00065-1
27.
Wu
,
J. J.
,
2008
, “
Transverse and Longitudinal Vibrations of a Frame Structure Due to a Moving Trolley and the Hoisted Object Using Moving Finite Element
,”
Int. J. Mech. Sci.
,
50
, pp.
613
625
.10.1016/j.ijmecsci.2008.02.001
28.
İsmail
,
E.
,
2011
, “
Dynamic Response of a Beam Due to an Accelerating Moving Mass Using Moving Finite Element Approximation
,”
Math. Comput. Appl.
,
16
(
1
), pp.
171
182
. Available at: http://mcajournal.cbu.edu.tr/specialissuevolume16_1/17.pdf
29.
Clough
,
R. W.
, and
Penzien
,
J.
,
1993
,
Dynamics of Structures
,
second ed.
,
McGraw-Hill
,
New York
.
30.
Bathe
,
K. J.
,
1982
,
Finite Element Procedure in Engineering Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Ellis
,
B. R.
,
Ji
,
T.
, and
Littler
,
J. D.
,
2000
, “
The Response of Grandstands to Dynamic Crowd Loads
,”
Proc. Inst. Civ. Eng., Struct. Build.
,
140
, pp.
355
365
.10.1680/stbu.2000.140.4.355
32.
Ellis
,
B. R.
,
2000
, “
On the Response of Long-Span Floors to Walking Loads Generated by Individual and Crowds
,”
J. Struct. Eng.
,
78
(
10
), pp.
17
25
. Available at: http://www.istructe.org/journal/volumes/volume-78-(published-in-2000)/issues/issue-10/articles/on-the-response-of-long-span-floors-to-walking-loa
33.
Yao
,
S.
,
Wright
,
J. R.
,
Pavic
,
A.
, and
Reynolds
,
P.
,
2006
, “
Experimental Study of Human-Induced Dynamic Forces Due to Jumping on a Perceptibly Moving Structure
,”
J. Sound Vib.
,
296
, pp.
150
165
.10.1016/j.jsv.2006.02.018
34.
Seyfarth
,
A.
,
Geyer
,
H.
,
Gunther
,
M.
, and
Blickhan
,
R.
,
2002
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
, pp.
649
655
.10.1016/S0021-9290(01)00245-7
35.
Farley
,
C. T.
, and
Gonzalez
,
O.
,
1996
, “
Leg Stiffness and Stride Frequency in Human Running
,”
J. Biomech.
,
29
(
2
), pp.
181
186
.10.1016/0021-9290(95)00029-1
36.
Ferris
,
D. P.
, and
Farley
,
C. T.
,
1997
, “
Interaction of Leg Stiffness and Surfaces Stiffness During Human Hopping
,”
J. Appl. Physiol.
,
82
, pp.
15
22
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9029193
37.
Farley
,
C. T.
,
Houdijk
,
H. H.
,
Van Strien
,
C.
, and
Louie
,
M.
,
1998
, “
Mechanism of Leg Stiffness Adjustment for Hopping on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol.
,
85
, pp.
1044
1055
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9729582
38.
Grimmer
,
S.
,
Ernst
,
M.
,
Guenther
,
M.
, and
Blickhan
,
R.
,
2008
, “
Running on Uneven Ground: Leg Adjustment to Vertical Steps and Self-Stability
,”
J. Exp. Biol.
,
211
(
18
), pp.
2989
3000
.10.1242/jeb.014357
39.
Mueller
,
R.
,
Grimmer
,
S.
, and
Blickhanm
R.
,
2010
, “
Running on Uneven Ground: Leg Adjustments by Muscle Pre-Activation Control
,”
Hum. Mov. Sci.
,
29
(
2
), pp.
299
310
.10.1016/j.humov.2010.01.003
40.
Zivanovic
,
S.
,
Pavic
,
A.
, and
Ingolfsson
,
E. T.
,
2010
, “
Modeling Spatially Unrestricted Pedestrian Traffic on Footbridges
,”
J. Struct. Eng.
,
136
(
10
), pp.
1296
1308
.10.1061/(ASCE)ST.1943-541X.0000226
41.
Brownjohn
,
J. M. W.
,
Fok
,
P.
,
Roche
,
M.
, and
Omenzetter
,
P.
,
2004
, “
Long Span Steel Pedestrian Bridge at Singapore Changi Airport—Part 2: Crowd Loading Tests and Vibration Mitigation Measures
,”
Struct. Eng.
,
82
(
16
), pp.
28
34
.
You do not currently have access to this content.