A generalized Reissner theory for axisymmetric problems of circular plates is presented. The plate is assumed to be linearly elastic, and large rotations and strains are allowed. Shear deformation and changes in the plate thickness are neglected. Equilibrium equations are formulated, and a shooting method is applied to obtain numerical results for plates subjected to a uniform pressure. The edge of the plate is assumed to be either simply supported or clamped, and is free to move radially. The resulting deflections are compared to those based on the von Kármán theory.

References

1.
Reissner
,
E
.,
1949
, “
On Finite Deflections of Circular Plates
,”
Non-Linear Problems in Mechanics of Continua
,
Proceedings of Symposia in Applied Mathematics
, Vol.
I
,
American Mathematical Society
,
New York
, pp.
213
219
.
2.
Simmonds
,
J. G.
,
1983
, “
Closed-Form, Axisymmetric Solution of the von Karman Plate Equations for Poisson's Ratio One-Third
,”
ASME J. Appl. Mech.
,
50
(
4
), pp.
897
898
.10.1115/1.3167167
3.
Frakes
,
J. P.
, and
Simmonds
,
J. G.
,
1985
, “
Asymptotic Solutions of the von Karman Equations for a Circular Plate Under a Concentrated Load
,”
ASME J. Appl. Mech.
,
52
(
2
), pp.
326
330
.10.1115/1.3169048
4.
Taber
,
L. A.
,
1985
, “
Nonlinear Asymptotic Solution of the Reissner Plate Equations
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
907
912
.10.1115/1.3169167
5.
Brodland
,
G. W.
,
1986
, “
Nonlinear Deformation of Uniformly Loaded Circular Plates
,”
Solid Mech. Arch.
,
11
(
4
), pp.
219
256
.
6.
Taber
,
L. A.
,
1986
, “
A Variational Principle for Large Axisymmetric Strain of Incompressible Circular Plates
,”
Int. J. Non-Linear Mech.
,
21
(
5
), pp.
327
337
.10.1016/0020-7462(86)90018-1
7.
Taber
,
L. A.
,
1987
, “
Asymptotic Expansions for Large Elastic Strain of a Circular Plate
,”
Int. J. Solids Struct.
,
23
(
6
), pp.
719
731
.10.1016/0020-7683(87)90075-8
8.
Brodland
,
G. W.
,
1988
, “
Highly Non-Linear Deformation of Uniformly-Loaded Circular Plates
,”
Int. J. Solids Struct.
,
24
(
4
), pp.
351
362
.10.1016/0020-7683(88)90066-2
9.
Reissner
,
E
.,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
(
2
), pp.
A68
A77
.
10.
Wang
,
C. M.
,
Lim
,
G. T.
,
Reddy
,
J. N.
, and
Lee
,
K. H.
,
2001
, “
Relationships Between Bending Solutions of Reissner and Mindlin Plate Theories
,”
Eng. Struct.
,
23
(
7
), pp.
838
849
.10.1016/S0141-0296(00)00092-4
11.
Plaut
,
R. H.
,
2009
, “
Linearly Elastic Annular and Circular Membranes Under Radial, Transverse, and Torsional Loading. Part I: Large Unwrinkled Axisymmetric Deformations
,”
Acta Mech.
,
202
(
1
), pp.
79
99
.10.1007/s00707-008-0037-3
12.
Gere
,
J. M.
, and
Goodno
,
B. J.
,
2009
,
Mechanics of Materials
, 7th ed.,
Cengage Learning
,
Stamford, CT
.
13.
Ozkul
,
M. H.
, and
Mark
,
J. E.
,
1994
, “
The Effect of Preloading on the Mechanical Properties of Polymeric Foams
,”
Polym. Eng. Sci.
,
34
(
10
), pp.
794
798
.10.1002/pen.760341003
14.
Hochradel
,
K.
,
Rupitsch
,
S. J.
,
Sutor
,
A.
,
Lerch
,
R.
,
Vu
,
D. K.
, and
Steinmann
,
P.
,
2012
, “
Dynamic Performance of Dielectric Elastomers Utilized as Acoustic Actuators
,”
Appl. Phys. A
,
107
(
3
), pp.
531
538
.10.1007/s00339-012-6837-2
15.
Schmidt
,
R.
, and
DaDeppo
,
D. A.
,
1975
, “
On Finite Axisymmetric Deflections of Circular Plates
,”
Z. Angew. Math. Mech.
,
55
(
12
), pp.
768
769
.10.1002/zamm.19750551216
16.
Way
,
S
.,
1934
, “
Bending of Circular Plates With Large Deflection
,”
Trans. ASME
,
56
(
8
), pp.
627
636
.
17.
Chien
,
W.-Z.
,
1947
, “
Large Deflection of a Circular Clamped Plate Under Uniform Pressure
,”
Acta Phys. Sin.
,
7
(
2
), pp.
102
113
.
18.
Chien
,
W.-Z.
, and
Yeh
,
K.-Y.
, “
On the Large Deflection of Circular Plate (in Chinese)
,”
Acta Phys. Sin.
,
10
(
3
), pp.
209
238
.
19.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
New York
.
20.
Chia
,
C.-Y.
,
1980
,
Nonlinear Analysis of Plates
,
McGraw-Hill
,
New York.
21.
Jensen
,
H. M.
,
1991
, “
The Blister Test for Interface Toughness Measurement
,”
Eng. Fract. Mech.
,
40
(
3
), pp.
475
486
.10.1016/0013-7944(91)90144-P
22.
Ye.
,
J.
,
1991
, “
Large Deflection Analysis of Axisymmetric Circular Plates With Variable Thickness by the Boundary Element Method
,”
Appl. Math. Model.
,
15
(
6
), pp.
325
328
.10.1016/0307-904X(91)90048-T
23.
Cao
,
J
.,
1996
, “
Computer-Extended Perturbation Solution for the Large Deflection of a Circular Plate. Part I: Uniform Loading With Clamped Edge
,”
Q. J. Appl. Math.
,
49
(
2
), pp.
163
178
.10.1093/qjmam/49.2.163
24.
Li
,
Q. S.
,
Liu
,
J.
, and
Xiao
,
H. B.
2004
, “
A New Approach for Bending Analysis of Thin Circular Plates With Large Deflection
,”
Int. J. Mech. Sci.
,
46
(
2
), pp.
173
180
.10.1016/j.ijmecsci.2004.03.012
25.
Altekin
,
M.
, and
Yükseler
,
R. F.
,
2011
, “
Large Deflection Analysis of Clamped Circular Plates
,” Proceedings of the World Congress on Engineering (WCE 2011),
London
, July 6–8.
26.
Striz
,
A. G.
,
Jang
,
S. K.
, and
Bert
,
C. W.
,
1988
, “
Nonlinear Bending Analysis of Thin Circular Plates by Differential Quadrature
,”
Thin-Walled Struct.
,
6
(
1
), pp.
51
62
.10.1016/0263-8231(88)90025-0
27.
Chen
,
Y. Z.
, and
Lee
,
K. Y.
,
2003
, “
Pseudo-Linearization Procedure of Nonlinear Ordinary Differential Equations for Large Deflection Problem of Circular Plates
,”
Thin-Walled Struct.
,
41
(
4
), pp.
375
388
.10.1016/S0263-8231(02)00092-7
28.
Chen
,
Y. Z.
,
2012
, “
Innovative Iteration Technique for Nonlinear Ordinary Differential Equations of Large Deflection Problem of Circular Plates
,”
Mech. Res. Commun.
,
43
(
1
), pp.
75
79
.10.1016/j.mechrescom.2012.02.013
You do not currently have access to this content.