A simple transformation is used to obtain the first integrals and the solutions of the Duffing–van der Pol type equation under certain conditions. It is shown that the system can be totally integrable and this total integrability admits new solutions. The new solutions require weaker conditions on the system's parameters than hereto known.

References

References
1.
Santilli
,
R. M.
,
1978
,
Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics
,
Springer-Verlag
,
New York
.
2.
Leitmann
,
G.
,
1963
, “
Some Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
30
, pp.
623
625
.10.1115/1.3636630
3.
Udwadia
,
F. E.
,
Leitmann
,
G.
, and
Cho
,
H.
,
2011
, “
Some Further Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
78
, p.
011014
.10.1115/1.4002435
4.
Udwadia
,
F. E.
, and
Cho
,
H.
,
2012
, “
Lagrangians for Damped Linear Multi-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
80
, p.
041023
.10.1115/1.4023019
5.
Pars
,
L. A.
,
1972
,
A Treatise on Analytical Dynamics
,
Ox Bow Press
,
Woodbridge, CT
.
6.
Prelle
,
M.
, and
Singer
,
M.
,
1983
, “
Elementary First Integrals of Differential Equations
,”
Trans. Am. Math. Soc.
,
279
, pp.
215
229
.10.1090/S0002-9947-1983-0704611-X
7.
Duarte
,
L. G. S.
,
Duarte
,
S. E. S.
,
da Mota
,
A. C. P.
, and
Skea
,
J. E. F.
,
2001
, “
Solving the Second-Order Ordinary Differential Equations by Extending the Prelle–Singer Method
,”
J. Phys. A
,
34
, pp.
3015
3024
.10.1088/0305-4470/34/14/308
8.
Hydon
,
P. E.
,
2000
,
Symmetry Methods for Differential Equations
,
Cambridge University Press
,
New York
.
9.
Gao
,
G.
, and
Feng
,
Z.
,
2010
, “
First Integrals for the Duffing–van der Pol Type Oscillator
,”
Electron. J. Differ. Equations
,
19
, pp.
1
12
.
10.
Feng
,
Z.
,
Gao
,
G.
, and
Cui
,
J.
,
2011
, “
Duffing–van der Pol Type Oscillator System and Its First Integrals
,”
Commun. Pure Appl. Anal.
,
10
, pp.
1377
1391
.10.3934/cpaa.2011.10.1377
You do not currently have access to this content.