Structural and aeroelastic analyses using beam theories by default choose a cross section that is perpendicular to the reference line. In several cases, such as swept wings with high AR, a beam theory that allows for the choice of a cross section that is oblique to the reference line may be more convenient. This work uses the variational asymptotic method (VAM) to develop such a beam theory. The problems addressed are the planar deformation of a strip and the full 3D deformation of a solid, prismatic, right-circular cylinder, both made of homogeneous, isotropic material. The motivation for choosing these problems is primarily the existence of 3D elasticity solutions, which comprise a complete validation set for all possible deformations and which are shown to be accurately captured by the current analysis. A secondary motivation was that the development and final results of the beam theory, i.e., the cross-sectional stiffness matrix and stress-strain-displacement recovery relations, are obtainable as closed-form analytical expressions. These results, coupled with the VAM-based beam analysis being devoid of ad hoc assumptions, culminate in what is expected to be of significance when formulating a general oblique cross-sectional analysis for beams with anisotropic material and initial curvature/twist, the detailed treatment of which will be alluded to in a later paper.

References

References
1.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
,
AIAA, Reston
,
VA
.
2.
Volovoi
,
V. V.
, and
Hodges
,
D. H.
,
2000
, “
Theory of Anisotropic Thin-Walled Beams
,”
ASME J. Appl. Mech.
,
67
(
3
), pp.
453
459
.10.1115/1.1312806
3.
Yu
,
W.
, and
Blair
,
M.
,
2012
, “
GEBT: A General-Purpose Tool For Nonlinear Analysis of Composite Beams
,”
Compos. Struct.
,
94
(
9
), pp.
2677
2689
.10.1016/j.compstruct.2012.04.007
4.
Rajagopal
,
A.
,
Hodges
,
D. H.
, and
Yu
,
W.
,
2012
, “
Asymptotic Beam Theory for Planar Deformation of Initially Curved Isotropic Strips
,”
Thin-Walled Struct.
,
50
, pp.
106
115
.10.1016/j.tws.2011.08.012
5.
Yu
,
W.
, and
Hodges
,
D. H.
,
2005
, “
Generalized Timoshenko Theory of the Variational Asymptotic Beam Sectional Analysis
,”
J. Am. Helicopter Soc.
,
50
(
1
), pp.
46
55
.10.4050/1.3092842
6.
Ho
,
J. C.
,
Yu
,
W.
, and
Hodges
,
D. H.
,
2012
, “
Proper Inclusion of Interiorly Applied Loads With Beam Theory
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011007
.10.1115/1.4006940
7.
Yu
,
W.
,
Hodges
,
D. H.
, and
Ho
,
J. C.
,
2012
, “
Variational Asymptotic Beam Sectional Analysis—An Updated Version
,”
Int. J. Eng. Sci.
,
59
, pp.
40
64
.10.1016/j.ijengsci.2012.03.006
8.
Carrera
,
E.
, and
Petrolo
,
M.
,
2010
, “
On the Effectiveness of Higher-Order Terms in Refined Beam Theories
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021013
.10.1115/1.4002207
9.
Carrera
,
E.
,
Miglioretti
,
F.
, and
Petrolo
,
M.
,
2012
, “
Computations and Evaluations of Higher-Order Theories for Free Vibration Analysis of Beams
,”
J. Sound Vib.
,
331
, pp.
4269
4284
.10.1016/j.jsv.2012.04.017
10.
Buannic
,
N.
, and
Cartraud
,
P.
,
2001
, “
Higher-Order Effective Modeling of Periodic Heterogeneous Beams. I. Asymptotic Expansion Method
,”
Int. J. Solid Struct.
,
38
, pp.
7139
7161
.10.1016/S0020-7683(00)00422-4
11.
Kim
,
J.-S.
, and
Wang
,
K. W.
,
2010
, “
Vibration Analysis of Composite Beams With End Effects Via the Formal Asymptotic Method
,”
ASME J. Vibr. Acoust.
,
132
, p.
041003
.10.1115/1.4000972
12.
Popescu
,
B.
,
Hodges
,
D. H.
, and
Cesnik
,
C.E.S.
,
2000
, “
Obliqueness Effects in Asymptotic Cross-Sectional Analysis of Composite Beams
,”
Comput. Struct.
,
76
(
4
), pp.
533
543
.10.1016/S0045-7949(99)00120-0
13.
Borri
,
M.
,
Ghiringhelli
,
G. L.
, and
Merlini
,
T.
,
1992
, “
Linear Analysis of Naturally Curved and Twisted Anisotropic Beams
,”
Compos. Eng.
,
2
(
5–7
), pp.
433
456
.10.1016/0961-9526(92)90036-6
14.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G. C.
, and
Mussi
,
F.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
(
1–4
), pp.
403
413
.10.1016/0045-7949(83)90179-7
15.
Liew
,
K. M.
, and
Lam
,
K. Y.
,
1990
, “
Application of Two-Dimensional Orthogonal Plate Function to Flexural Vibration of Skew Plates
,”
J. Sound Vib.
,
139
(
2
), pp.
241
252
.10.1016/0022-460X(90)90885-4
16.
Liew
,
K. M.
,
Xiang
,
Y.
,
Kitipornchai
,
S.
, and
Wang
,
C. M.
,
1993
, “
Vibration of Thick Skew Plates Based on Mindlin Shear Deformation Plate Theory
,”
J. Sound Vib.
,
168
(
1
), pp.
39
69
.10.1006/jsvi.1993.1361
17.
Ashour
,
A. S.
,
2009
, “
The Free Vibration of Symmetrically Angle-Ply Laminated Fully Clamped Skew Plates
,”
J. Sound Vib.
,
323
, pp.
444
450
.10.1016/j.jsv.2008.12.027
18.
Lee
,
S.-Y.
,
2010
, “
Finite Element Dynamic Stability Analysis of Laminated Composite Skew Plates Containing Cutouts Based on HSDT
,”
Compos. Sci. Technol.
,
70
, pp.
1249
1257
.10.1016/j.compscitech.2010.03.013
19.
Kargarnovin
,
M. H.
, and
Joodaky
,
A.
,
2010
, “
Bending Analysis of Thin Skew Plates Using Extended Kantorovich Method
,”
ASME
Paper No. ESDA2010-24138.10.1115/ESDA2010-24138
20.
Sutyrin
,
V. G.
,
1997
, “
Derivation of Plate Theory Accounting Asymptotically Correct Shear Deformation
,”
ASME J. Appl. Mech.
,
64
(
4
), pp.
905
915
.10.1115/1.2788998
21.
Yu
,
W.
, and
Hodges
,
D. H.
,
2004
, “
A Geometrically Nonlinear Shear Deformation Theory for Composite Shells
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
1
9
.10.1115/1.1640364
22.
Hodges
,
D. H.
,
Rajagopal
,
A.
,
Ho
,
J. C.
, and
Yu
,
W.
,
2010
, “
Stress and Strain Recovery for the In-Plane Deformation of an Isotropic Tapered Strip-Beam
,”
J. Mech. Mater. Struct.
,
5
(
6
), pp.
963
975
.10.2140/jomms.2010.5.963
23.
Rajagopal
,
A.
, and
Hodges
,
D. H.
,
2012
, “
Analytical Beam Theory for the In-Plane Deformation of a Composite Strip With In-Plane Curvature
,”
Compos. Struct.
,
94
, pp.
3793
3798
.10.1016/j.compstruct.2012.06.010
24.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York
.
25.
Love
,
A.E.H.
,
1944
,
Mathematical Theory of Elasticity
,
4th ed.
,
Dover
,
New York
.
26.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill
,
New York.
27.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformation
,
Ellis Horwood
,
Chicester, UK
.
28.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
262
.10.1115/1.3173004
29.
Yu
,
W.
, and
Hodges
,
D. H.
,
2004
, “
Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
15
23
.10.1115/1.1640367
30.
Patil
,
M. J.
, and
Hodges
,
D. H.
,
2006
, “
Flight Dynamics of Highly Flexible Flying Wings
,”
J. Aircraft
,
43
(
6
), pp.
1790
1799
.10.2514/1.17640
You do not currently have access to this content.