The effects of hydrostatic stress and concentration-dependent elastic modulus on diffusion-induced stress (DIS) in a cylindrical Li-ion battery are studied. It is found that the hydrostatic stress has little effect on the distribution of stresses but the change of elastic modulus has a significant effect on the distribution of stresses. The hydrostatic stress has little effect on the location of maximum hoop stress in active layer. The change of elastic modulus can slow down the trend with closing to the inner surface for the location of the maximum hoop stress in active layer with the thicker current collector or larger modulus of current collector and speed up the trend with closing to the outer surface with the smaller ratio of electrode radius to thickness. The current collector should be as thin and soft as possible when its premise strength is satisfied. The ratio of electrode radius to thickness should be preferably larger than 15.

References

1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
, pp.
359
367
.10.1038/35104644
2.
Prussin
,
S.
,
1961
, “
Generation and Distribution of Dislocations by Solute Diffusion
,”
J. Appl. Phys.
,
32
(
10
), pp.
1876
1881
.10.1063/1.1728256
3.
Wolfenstine
,
J.
,
2003
, “
A High Ratio of the Testing Temperature to the Melting Temperature: A Necessary but Not Sufficient Condition for an Alloy Anode to Exhibit Low Capacity Fade
,”
Mater. Lett.
,
57
, pp.
3983
3986
.10.1016/S0167-577X(03)00251-9
4.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), p.
073517
.10.1063/1.3492617
5.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
, pp.
453
460
.10.1016/j.jpowsour.2009.01.021
6.
Zhang
,
X. C.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
.10.1149/1.2759840
7.
Chu
,
J. L.
, and
Lee
,
S. B.
,
1994
, “
The Effect of Chemical Stresses on Diffusion
,”
J. Appl. Phys.
,
75
(
6
), pp.
2823
2829
.10.1063/1.356174
8.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electron.
,
10
(
5
), pp.
293
319
.10.1007/s10008-006-0095-1
9.
Song
,
Y. C.
,
Lu
,
B.
,
Ji
,
X.
, and
Zhang
,
J. Q.
,
2012
, “
Diffusion Induced Stresses in Cylindrical Lithium-Ion Batteries: Analytical Solutions and Design Insights
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A2060
A2068
.10.1149/2.079212jes
10.
Kalnaus
,
S.
,
Rhodes
,
K.
, and
Daniel
,
C.
,
2011
, “
A Study of Lithium Ion Intercalation Induced Fracture of Silicon Particles Used as Anode Material in Li-Ion Battery
,”
J. Power Sources
,
196
(
19
), pp.
8116
8124
.10.1016/j.jpowsour.2011.05.049
11.
Maxisch
,
T.
, and
Ceder
,
G.
,
2006
, “
Elastic Properties of Olivine LixFePO4 From First Principles
,”
Phys. Rev. B
,
73
(
17
), p.
174112
.10.1103/PhysRevB.73.174112
12.
Qi
,
Y.
,
Guo
,
H.
,
Hector
, Jr.,
L. G.
, and
Timmons
,
A.
,
2010
, “
Threefold Increase in the Young's Modulus of Graphite Negative Electrode During Lithium Intercalation
,”
J. Electrochem. Soc.
,
157
(
5
), pp.
A558
A566
.10.1149/1.3327913
13.
Stournara
,
M. E.
,
Guduru
,
P. R.
, and
Shenoy
,
V. B.
,
2012
, “
Elastic Behavior of Crystalline Li–Sn Phases With Increasing Li Concentration
,”
J. Power Sources
,
208
(
15
), pp.
165
169
.10.1016/j.jpowsour.2012.02.022
14.
Shenoy
,
V. B.
,
Johari
,
P.
, and
Qi
,
Y.
,
2010
, “
Elastic Softening of Amorphous and Crystalline Li–Si Phases With Increasing Li Concentration: A First-Principles Study
,”
J. Power Sources
,
195
(
19
), pp.
6825
6830
.10.1016/j.jpowsour.2010.04.044
15.
Yang
,
B.
,
He
,
Y.-P.
,
Irsa
,
J.
,
Lundgren
,
C. A.
,
Ratchford
,
J. B.
, and
Zhao
,
Y.-P.
,
2012
, “
Effects of Composition-Dependent Modulus, Finite Concentration and Boundary Constraint on Li-Ion Diffusion and Stresses in a Bilayer Cu-Coated Si Nano-Anode
,”
J. Power Sources
,
204
, pp.
168
176
.10.1016/j.jpowsour.2012.01.029
16.
Yang
,
F. Q.
,
2012
, “
Diffusion-Induced Stress in Inhomogeneous Materials: Concentration-Dependent Elastic Modulus
,”
Sci. China-Phys. Mech. Astron.
,
55
(
6
), pp.
955
962
.10.1007/s11433-012-4687-8
17.
Deshpande
,
R.
,
Qi
,
Y.
, and
Cheng
,
Y. T.
,
2010
, “
Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications
,”
J. Electrochem. Soc.
,
157
, pp.
A967
A971
.10.1149/1.3454762
18.
Song
,
Y. C.
,
Shao
,
X. J.
,
Guo
,
Z. S.
, and
Zhang
,
J. Q.
,
2013
, “
Role of Material Properties and Mechanical Constraint on Stress-Assisted Diffusion in Plate Electrodes of Lithium Ion Batteries
,”
J. Phys. D
,
46
, pp.
105307
105316
.10.1088/0022-3727/46/10/105307
19.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2011
, “
Strong Stress-Enhanced Diffusion in Amorphous Lithium Alloy Nanowire Electrodes
,”
J. Appl. Phys.
,
109
(
1
), pp.
014310
014316
.10.1063/1.3530738
20.
Larche
,
F. C.
, and
Cahn
,
J. W.
,
1985
, “
Overview No. 41. The Interactions of Composition and Stress in Crystalline Solids
,”
Acta Metall.
,
33
(
3
), pp.
331
357
.10.1016/0001-6160(85)90077-X
21.
Crank
,
J.
,
1979
,
The Mathematics of Diffusion
,
Oxford University
,
London
.
22.
García
,
R. E.
,
Chiang
,
Y.-M.
,
Carter
,
W. C.
,
Limthongkul
,
P.
, and
Bishop
,
C. M.
,
2005
, “
Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
152
(
1
), pp.
A255
A263
.10.1149/1.1836132
23.
Shi
,
D. H.
,
2010
,
Stress Analysis of the Separator in a Lithium-Ion Battery
,
Michigan State University
, Ann Arbor, MI.
You do not currently have access to this content.