An effective yield function is derived for a porous ductile solid near a state of failure by microvoid coalescence. Homogenization theory combined with limit analysis are used to that end. A cylindrical cell is taken to contain a coaxial cylindrical void of finite height. Plastic flow in the intervoid matrix is described by J2 theory while regions above and below the void remain rigid. Velocity boundary conditions are employed which are compatible with an overall uniaxial straining for the cell, a postlocalization kinematics that is ubiquitous during the coalescence of neighboring microvoids in rate-independent solids. Such boundary conditions are not of the uniform strain rate kind, as is the case for Gursonlike models. A similar limit analysis problem for a square-prismatic cell containing a square-prismatic void was posed long ago (Thomason, P. F., 1985, “Three-Dimensional Models for the Plastic Limit–Loads at Incipient Failure of the Intervoid Matrix in Ductile Porous Solids,” Acta Metallurgica, 33, pp. 1079–1085). However, to date a closed-form solution to this problem has been lacking. Instead, an empirical expression of the yield function proposed therein has been widely used in the literature. The fully analytical expression derived here is intended to be used concurrently with a Gursonlike yield function in numerical simulations of ductile fracture.

References

1.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
, pp.
2
15
.10.1115/1.3443401
2.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup–Cone Fracture in a Round Tensile Bar
,”
Acta Metallurgica
,
32
, pp.
157
169
.10.1016/0001-6160(84)90213-X
3.
Koplik
,
J.
, and
Needleman
,
A.
,
1988
, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
,
24
(
8
), pp.
835
853
.10.1016/0020-7683(88)90051-0
4.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1997
, “
Recent Extensions of Gurson's Model for Porous Ductile Metals
,”
Continuum Micromechanics
(CISM Lectures Series),
P.
Suquet
, ed.,
Springer
,
New York
, pp.
61
130
.
5.
Benzerga
,
A. A.
, and
Besson
,
J.
,
2001
, “
Plastic Potentials for Anisotropic Porous Solids
,”
Eur. J. Mech.
,
20A
(3), pp.
397
434
10.1016/S0997-7538(01)01147-0
6.
Keralavarma
,
S. M.
, and
Benzerga
,
A. A.
,
2010
, “
A Constitutive Model for Plastically Anisotropic Solids With Non-Spherical Voids
,”
J. Mech. Phys. Solids
,
58
, pp.
874
901
.10.1016/j.jmps.2010.03.007
7.
Madou
,
K.
, and
Leblond
,
J.-B.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids—I: Limit-Analysis of Some Representative Cell
,”
J. Mech. Phys. Solids
,
60
, pp.
1020
1036
.10.1016/j.jmps.2011.11.008
8.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.10.1016/S0065-2156(10)44003-X
9.
Madou
,
K.
, and
Leblond
,
J.-B.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids—II: Determination of Yield Criterion Parameters
,”
J. Mech. Phys. Solids
,
60
, pp.
1037
1058
.10.1016/j.jmps.2012.01.010
10.
Thomason
,
P. F.
,
1985
, “
Three-Dimensional Models for the Plastic Limit–Loads at Incipient Failure of the Intervoid Matrix in Ductile Porous Solids
,”
Acta Metallurgica
,
33
, pp.
1079
1085
.10.1016/0001-6160(85)90201-9
11.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
1999
, “
Coalescence—Controlled Anisotropic Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
121
, pp.
221
229
.10.1115/1.2812369
12.
Zhang
,
Z. L.
, and
Niemi
,
E.
,
1995
, “
A New Failure Criterion for the Gurson-Tvergaard Dilational Constitutive Model
,”
Int. J. Fracture
,
70
, pp.
321
334
.10.1007/BF00032450
13.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
,
2000
, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
, pp.
2467
2512
.10.1016/S0022-5096(00)00019-3
14.
Tekoglu
,
C.
,
Leblond
,
J.-B.
, and
Pardoen
,
T.
,
2012
, “
A Criterion for the Onset of Void Coalescence Under Combined Tension and Shear
,”
J. Mech. Phys. Solids
,
60
, pp.
1363
1381
.10.1016/j.jmps.2012.02.006
15.
Hosokawa
,
A.
,
Wilkinson
,
D. S.
,
Kang
,
J.
, and
Maire
,
E.
,
2013
, “
Onset of Void Coalescence in Uniaxial Tension Studied by Continuous X-Ray Tomography
,”
Acta Mater.
,
61
, pp.
1021
1036
.10.1016/j.actamat.2012.08.002
16.
Benzerga
,
A. A.
,
2002
, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
,
50
, pp.
1331
1362
.10.1016/S0022-5096(01)00125-9
17.
Tracey
,
D. M.
,
1971
, “
Strain Hardening and Interaction Effects on the Growth of Voids in Ductile Fracture
,”
Eng. Fracture Mech.
,
3
, pp.
301
315
.10.1016/0013-7944(71)90040-3
18.
Kudo
,
H.
,
1960
, “
Some Analytical and Experimental Studies of Axi-Symmetric Cold Forging and Extrusion—I
,”
Int. J. Mech. Sci.
,
2
, pp.
102
127
.10.1016/0020-7403(60)90016-3
19.
Keralavarma
,
S. M.
,
Hoelscher
,
S.
, and
Benzerga
,
A. A.
,
2011
, “
Void Growth and Coalescence in Anisotropic Plastic Solids
,”
Int. J. Solids Struct.
,
48
, pp.
1696
1710
.10.1016/j.ijsolstr.2011.02.020
20.
Trillat
,
M.
, and
Pastor
,
J.
,
2005
, “
Limit Analysis and Gurson's Model
,”
Eur. J. Mech.
,
24
, pp.
800
819
.10.1016/j.euromechsol.2005.06.003
You do not currently have access to this content.