A rigid ellipsoidal die slides on the surfaces of transversely isotropic half-spaces. In one case the material symmetry axis coincides with the half-space surface normal. In the other, the axis lies in the plane of the surface. In both cases sliding proceeds with constant sub-critical speed along a straight path at an arbitrary angle to the principal material axes. A three-dimensional dynamic steady state is considered, i.e., the contact zone surface must conform to the die profile and contact zone traction remains constant in the frame of the die. Exact solutions for contact zone traction are derived in analytic form, as well as formulas for contact zone geometry. Symmetry need not be assumed in the solution process. Anisotropy is found to largely determine zone shape at low sliding speed, but the direction of sliding can become a major influence at higher sliding speeds. Cartesian coordinates are used in the analysis, but introduction of quasi-polar coordinates allows problem reduction to a Cauchy singular integral equation.

References

1.
Barwell
,
F. T.
,
1979
,
Bearing Systems, Principles and Practice
,
Oxford University
,
Oxford, London
.
2.
Bayer
,
R. G.
,
1994
,
Mechanical Wear Prediction and Prevention
,
Marcel Dekker
,
New York
.
3.
Blau
,
P. J.
,
1996
,
Friction Science and Technology
,
Marcel Dekker
,
New York.
4.
Ahmadi
,
N.
,
Keer
,
L. M.
, and
Mura
,
T.
,
1983
, “
Non-Hertzian Contact Stress Analysis for an Elastic Half-Space—Normal and Sliding Contact
,”
Int. J. Solids Struct.
,
19
, pp.
357
373
.10.1016/0020-7683(83)90032-X
5.
Barber
,
J. R.
,
1983
, “
The Solution of Elasticity Problems for the Half-Space By the Method of Green and Collins
,”
Appl. Sci. Res.
,
40
, pp.
135
157
.10.1007/BF00386216
6.
Barber
,
J. R.
,
1992
,
Elasticity
,
Kluwer
,
Dordrecht, The Netherlands
.
7.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, UK
.
8.
Hills
,
D. A.
,
Nowell
,
D.
, and
Sackfield
,
A.
,
1993
,
Mechanics of Elastic Contacts
,
Butterworth-Heinemann
,
Oxford, UK
.
9.
Kalker
,
J. J.
,
1990
,
Three-Dimensional Bodies in Elastic Constant
,
Kluwer
,
Dordrecht, The Netherlands
.
10.
Craggs
,
J. W.
, and
Roberts
,
A. M.
,
1967
, “
On the Motion of a Heavy Cylinder Over the Surface of an Elastic Half-Space
,”
ASME J. Appl. Mech.
,
34
, pp.
207
209
.10.1115/1.3607626
11.
Churilov
,
V. A.
,
1978
, “
Action of an Elliptical Stamp Moving at a Constant Speed on an Elastic Half-Space
,”
J. Appl. Math. Mech.
,
42
, pp.
1176
1182
.10.1016/0021-8928(78)90067-9
12.
Rahman
,
M.
,
1996
, “
Hertz Problem for a Rigid Punch Moving Across the Surface of a Semi-Infinite Elastic Solid
,”
Z. Angew. Math. Mech.
,
47
, pp.
601
615
.10.1007/BF00914874
13.
Brock
,
L. M.
,
2012
, “
Two Cases of Rapid Contact on an Elastic Half-Space: Sliding Ellipsoidal Die, Rolling Sphere
,”
J. Mech. Mater. Struct.
,
7
, pp.
469
483
.10.2140/jomms.2012.7.469
14.
Ting
,
T. C. T.
,
1996
,
Anisotropic Elasticity
,
Oxford University
,
New York
.
15.
Brock
,
L. M.
,
2002
, “
Exact Analysis of Dynamic Sliding Indentation at Any Constant Speed on an Orthotropic or Transversely Isotropic Half-Space
,”
ASME J. Appl. Mech.
,
69
, pp.
340
345
.10.1115/1.1464874
16.
Hohn
,
F. E.
,
1965
,
Elementary Matrix Algebra
,
Macmillan
,
New York
.
17.
Jones
,
R. M.
,
1999
,
Mechanics of Composite Materials
, 2nd ed.,
Brunner-Routledge
,
New York
.
18.
Sneddon
,
I. N.
,
1972
,
The Use of Integral Transforms
,
McGraw-Hill
,
New York
.
19.
Erdogan
,
F.
,
1985
, “
Mixed Boundary Value Problems in Mechanics
,”
Mechanics Today
, Vol.
4
,
S.
Nemat-Nasser
, ed.,
S. Pergamon
,
New York
, pp.
1
86
.
20.
Georgiadis
,
H. G.
, and
Barber
,
J. R.
,
1993
, “
On the Super-Rayleigh/Subseismic Elastodynamic Indentation Problem
,”
J. Elasticity
,
31
, pp.
141
161
.10.1007/BF00044967
21.
Brock
,
L. M.
,
2013
, “
Rapid Contact on a Pre-Stressed Highly Elastic Half-Space: The Sliding Ellipsoid and Rolling Sphere
,”
ASME J. Appl. Mech.
,
80
, p.
021023
.10.1115/1.4007478
22.
Peirce
,
B. O.
, and
Foster
,
R. M.
,
1956
,
A Short Table of Integrals
, 4th ed.,
Ginn
,
New York
.
23.
Stakgold
,
I. S.
,
1967
,
Boundary Value Problems in Mathematical Physics
, Vol.
1
,
Macmillan
,
New York
.
You do not currently have access to this content.