An approach for stress analysis of multilayered composite cylinders is proposed for the analysis of new composite risers used in deep-water oil production of offshore petroleum industries. Risers essentially comprise long cylindrical sections connected end-to-end. In the formulation, only stresses and strains that are continuous through the thickness of the multilayered composite risers are taken to be equal to reported solutions for homogenous orthotropic hollow cylinders using homogenized material properties. These stress and strain solutions are then used to calculate the remaining discontinuous stresses and strains from the material properties of individual layers of materials. The homogenized elastic constants of cylindrically orthotropic composite risers are derived from force-deformation equivalence, taking into account the stress and strain distributions in each layer. Four typical loading conditions are considered in the stress analysis, namely, internal and external pressures, axial loading, bending, and torsion. Examples of homogenized elastic constants and stress analyses of composite cylindrical structures with different layups and materials are presented to demonstrate the application of the proposed method. The results compared very favorably with those from other solutions. This method provides practical benefits for the design and analysis of composite risers. Because there is no requirement to explicitly enforce interfacial continuity in this method, stress analyses of composite cylinders with many layers of different fiber angles or materials can be carried out efficiently. The homogenized elastic constants can greatly expedite the analysis of entire composite riser systems by replacing complex models of riser sections with homogenized riser sections.

References

1.
Tarnopol'skii
,
Y. M.
Kulakov
,
V. L.
, and
Mungalov
,
D. D.
,
1999
, “
Composites in Offshore Technology in the Next Century
,”
Mech. Compos. Mater.
,
35
(
5
), pp.
365
372
.10.1007/BF02329321
2.
Lekhnitskii
,
S. G.
,
1981
,
Theory of Elasticity of an Anisotropic Body
,
Mir Publishers
,
Moscow
.
3.
Ting
,
T. C. T.
,
1999
, “
New Solutions to Pressuring, Shearing, Torsion and Extension of a Cylindrically Anisotropic Elastic Circular Tube or Bar
,”
P. Roy. Soc. Lond. A Mat.
,
455
(
1989
), pp.
3527
3542
.10.1098/rspa.1999.0464
4.
Chen
,
T.
,
Chung
,
C. T.
, and
Lin
,
W. L.
,
2000
, “
A Revisit of a Cylindrically Anisotropic Tube Subjected to Pressuring, Shearing, Torsion, Extension and a Uniform Temperature Change
,”
Int. J. Solids Struct.
,
37
(
37
), pp.
5143
5159
.10.1016/S0020-7683(99)00202-4
5.
Pagano
,
N. J.
,
1972
, “
The Stress Field in a Cylindrically Anisotropic Body Under Two-Dimensional Surface Tractions
,”
ASME J. Appl. Mech.
,
39
(
3
), pp.
791
796
.10.1115/1.3422790
6.
Ting
,
T. C. T.
,
1996
, “
Pressuring, Shearing, Torsion and Extension of a Circular Tube or Bar of Cylindrically Anisotropic Material
,”
P. Roy. Soc. Lond. A Mat.
,
452
(
1954
), pp.
2397
2421
.10.1098/rspa.1996.0129
7.
Jolicoeur
,
C.
, and
Cardou
,
A.
,
1994
, “
Analytical Solution for Bending of Coaxial Orthotropic Cylinders
,”
J. Eng. Mech. ASCE
,
120
(
12
), pp.
2556
2574
.10.1061/(ASCE)0733-9399(1994)120:12(2556)
8.
Wild
,
P. M.
, and
Vickers
,
G. W.
,
1997
, “
Analysis of Filament-Wound Cylindrical Shells Under Combined Centrifugal, Pressure and Axial Loading
,”
Compos. A Appl. S.
,
28
(
1
), pp.
47
55
.10.1016/S1359-835X(96)00093-0
9.
Parnas
,
L.
, and
Katirci
,
N.
,
2002
, “
Design of Fiber-Reinforced Composite Pressure Vessels Under Various Loading Conditions
,”
Compos. Struct.
,
58
(
1
), pp.
83
95
.10.1016/S0263-8223(02)00037-5
10.
Chouchaoui
,
C. S.
, and
Ochoa
,
O. O.
,
1999
, “
Similitude Study for a Laminated Cylindrical Tube Under Tensile, Torsion, Bending, Internal and External Pressure. Part I: Governing Equations
,”
Compos. Struct.
,
44
(
4
), pp.
221
229
.10.1016/S0263-8223(98)00068-3
11.
Chouchaoui
,
C. S.
,
Parks
,
P.
, and
Ochoa
,
O. O.
,
1999
, “
Similitude Study for a Laminated Cylindrical Tube Under Tensile, Torsion, Bending, Internal and External Pressure. Part II: Scale Models
,”
Compos. Struct.
,
44
(
4
), pp.
231
236
.10.1016/S0263-8223(98)00069-5
12.
Xia
,
M.
,
Takayanagi
,
H.
, and
Kemmochi
,
K.
,
2002
, “
Bending Behavior of Filament-Wound Fiber-Reinforced Sandwich Pipes
,”
Compos. Struct.
,
56
(
2
), pp.
201
210
.10.1016/S0263-8223(01)00181-7
13.
Kollár
,
L. P.
, and
Springer
,
G. S.
,
1992
, “
Stress Analysis of Anisotropic Laminated Cylinders and Cylindrical Segments
,”
Int. J. Solids Struct.
,
29
(
12
), pp.
1499
1517
.10.1016/0020-7683(92)90130-L
14.
Kollár
,
L. P.
,
Patterson
,
J. M.
, and
Springer
,
G. S.
,
1992
, “
Composite Cylinders Subjected to Hygrothermal and Mechanical Loads
,”
Int. J. Solids Struct.
,
29
(
12
), pp.
1519
1534
.10.1016/0020-7683(92)90131-C
15.
Bhaskar
,
K.
, and
Varadan
,
T. K.
,
1993
, “
Exact Elasticity Solution for Laminated Anisotropic Cylindrical Shells
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
41
47
.10.1115/1.2900777
16.
Xia
,
M.
,
Takayanagi
,
H.
, and
Kemmochi
,
K.
,
2001
, “
Analysis of Multi-Layered Filament-Wound Composite Pipes Under Internal Pressure
,”
Compos. Struct.
,
53
(
4
), pp.
483
491
.10.1016/S0263-8223(01)00061-7
17.
Xia
,
M.
,
Kemmochi
,
K.
, and
Takayanagi
,
H.
,
2001
, “
Analysis of Filament-Wound Fiber-Reinforced Sandwich Pipe Under Combined Internal Pressure and Thermomechanical Loading
,”
Compos. Struct.
,
51
(
3
), pp.
273
283
.10.1016/S0263-8223(00)00137-9
18.
Calhoglu
,
H.
,
Ergun
,
E.
, and
Demirdag
,
O.
,
2008
, “
Stress Analysis of Filament-Wound Composite Cylinders Under Combined Internal Pressure and Thermal Loading
,”
Adv. Compos. Lett.
,
17
(
1
), pp.
13
21
.
19.
Bakaiyan
,
H.
,
Hosseini
,
H.
, and
Ameri
,
E.
,
2009
, “
Analysis of Multi-Layered Filament-Wound Composite Pipes Under Combined Internal Pressure and Thermomechanical Loading With Thermal Variations
,”
Compos. Struct.
,
88
(
4
), pp.
532
541
.10.1016/j.compstruct.2008.05.017
20.
Tarn
,
J. Q.
, and
Wang
,
Y. M.
,
2001
, “
Laminated Composite Tubes Under Extension, Torsion, Bending, Shearing and Pressuring: A State Space Approach
,”
Int. J. Solids Struct.
,
38
(
50–51
), pp.
9053
9075
.10.1016/S0020-7683(01)00170-6
21.
Tarn
,
J. Q.
,
2002
, “
A State Space Formalism for Anisotropic Elasticity. Part II: Cylindrical Anisotropy
,”
Int. J. Solids Struct.
,
39
(
20
), pp.
5157
5172
.10.1016/S0020-7683(02)00412-2
22.
Daniel
,
I. M.
, and
Ishai
,
O.
,
2006
,
Engineering Mechanics of Composite Materials
, 2nd ed.,
Oxford University Press
,
New York
.
23.
Sun
,
C. T.
, and
Li
,
S.
,
1988
, “
Three-Dimensional Effective Elastic Constants for Thick Laminates
,”
J. Compos. Mater.
,
22
(
7
), pp.
629
639
.10.1177/002199838802200703
24.
Enie
,
R. B.
, and
Rizzo
,
R. R.
,
1970
, “
Three-Dimensional Laminate Moduli
,”
J. Compos. Mater.
,
4
(
1
), pp.
150
154
.10.1177/002199837000400118
25.
Huang
,
Y.
,
Hu
,
K. X.
, and
Chandra
,
A.
,
1993
, “
The Effective Elastic Moduli of Microcracked Composite Materials
,”
Int. J. Solids Struct.
,
30
(
14
), pp.
1907
1918
.10.1016/0020-7683(93)90224-U
26.
Huang
,
Y.
, and
Hu
,
K. X.
,
1994
, “
Elastic-Moduli of a Microcracked Composite With Spherical Inclusions of Cubic Anisotropy
,”
Compos. Sci. Technol.
,
50
(
2
), pp.
149
156
.10.1016/0266-3538(94)90136-8
You do not currently have access to this content.