Random vibrations of the damped Bernoulli–Euler beam with two supports and subjected to a stationary random excitation are studied. The supports are symmetrically placed with respect to the middle cross-section of the beam. We investigate the mean square displacement of the beam with the goal of determining the optimum location of supports in order to minimize the maximum probabilistic response. This study falls in the category of hybrid optimization and anti-optimization, since we are looking for the worst maximum response, constituting the anti-optimization process; subsequently, we are looking for optimization of the structure to make the maximum response minimal by properly the spacing supports.
Issue Section:
Research Papers
References
1.
Bolotin
, V. V.
, 1984
, Random Vibrations of Elastic Systems
, Martinus Nijhoff
, The Hague
.2.
Crandall
, S. H.
, 1979
, “Random Vibrations of One- and Two-Dimensional Structures
,” Developments in Statistics
, P. R.
Krishnayah
, ed., Academic
, New York
, pp. 1
–82
.3.
Elishakoff
, I.
, 1999
, Probabilistic Theory of Structures
, 2nd ed., Dover
, Mineola, NY
.4.
Kree
, P.
, and Soize
, C.
, 1983
, Mécanique Aléatoire
, Dunod
, Paris (in French)
.5.
Wedig
, W.
, 1981
, “Stationaere Zufallschwingungen von Balken—Eine Neue Methode zur Kovarianzanalyse
,” Z. Angew. Math. Mech.
, 60
, pp. T89
–T91
(in German).6.
Yang
, C. Y.
, 1985
, Random Vibrations of Structures
, Wiley-Interscience
, New York
.7.
Niordson
, F. I.
, and Simmonds
, J. G.
, 1975
, “An Improved Stodola Method for Computing Close Eigenvalues
,” Foundations of Deformable Media
, Galerkin 100th birthday volume
, Nauka, Moscow
, pp. 413
–419
(in Russian).8.
Elishakoff
, I.
, and Ohsaki
, M.
, 2010
, Optimization and Anti-Optimization of Structures Under Uncertainty
, Imperial College Press
, London
.9.
Elishakoff
, I.
, 1990
, “An Idea of the Uncertainty Triangle
,” Shock Vib. Dig.
, 22
(10
), p. 1.10.
Adali
, S.
, Lena
, F.
, Devaut
, G.
, and Chiaruttini
, V.
, 2002
, “Optimization of Laminated Composites Under Buckling Uncertainties Via Anti-Optimization
,” Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Atlanta, GA, September 4–6, AIAA
Paper No. 2002-5417.10.2514/6.2002-541711.
Bu
, J. L.
, Jiang
, Z. G.
, and Jiao
, S. H.
, 2012
, “Study of Anti-Optimization Method to Identify the Parameters of the Frequency Correlation Viscoelastic Model for Rubber
,” Adv. Mater. Res.
, 415-417
, pp. 232
–236
.10.4028/www.scientific.net/AMR.415-417.23212.
Catallo
, L.
, 2004
,”Genetic Anti-Optimization for Reliability Structural Assessment of Precast Concrete Structures
,” Comput. Struct.
, 82
(13–14
), pp. 1053
–1065
.10.1016/j.compstruc.2004.03.01813.
Elishakoff
, I.
, Haftka
, R. T.
, and Fang
, J.
, 1994
, “Structural Design Under Bounded Uncertainty—Optimization With Anti-Optimization
,” Comput. Struct.
, 53
(6
), pp. 1401
–1405
.10.1016/0045-7949(94)90405-714.
Elishakoff
, I.
, Kriegesmann
, B.
, Rolfes
, R.
, Huenne
, C.
, and Kling
, A.
, 2012
, “Optimization and Anti-Optimization of Buckling Load for Composite Cylindrical Shells Under Uncertainties
,” AIAA J.
, 50
(7
), pp. 1513
–1534
.10.2514/1.J05130015.
de Faria
, R.
, 2002
, “Buckling Optimization and Anti-Optimization of Composite Plates: Uncertain Load Combinations
,” Int.l J. Numer. Methods Eng.
, 53
, pp. 719
–732
.10.1002/nme.30916.
Gangadharan
, S.
, Nikolaidis
, E.
, Lee
, K.
, Haftka
, R. T.
, and Burdisso
, R.
, 1999
, “Anti-Optimization for Comparison of Alternative Structural Models and Damage Detection
,” AIAA J.
, 37
(7
), pp. 857
–864
.10.2514/2.753417.
Hlaváček
, I.
, Chleboun
, J.
, and Babuška
, I.
, 2004
, Uncertain Input Data Problems and the Worst Scenario Method
, Elsevier
, Amsterdam
.18.
Lee
, J.
, Haftka
, R. T.
, Griffin
, O. H.
, Jr., Watson
, L. T.
, and Sensmeier
, M. D.
, 1994
, “Detecting Delamination in a Composite Beam Using Anti-Optimization
,” Struct. Optim.
, 8
(2/3
), pp. 93
–100
.10.1007/BF0174330419.
Lombardi
, M.
, and Haftka
, R. T.
, 1998
, “Anti-Optimization Technique for Structural Design Under Load Uncertainties
,” Comput. Methods Appl. Mech. Eng.
, 157
(1-2
), pp. 19
–31
.10.1016/S0045-7825(97)00148-520.
McWilliam
, S.
, 2001
, “Anti-Optimization of Uncertain Structures Using Interval Analysis
,” Comput. Struct.
, 79
, pp. 421
–430
.10.1016/S0045-7949(00)00143-721.
Ohsaki
, M.
, Zhang
, J.
, and Elishakoff
, I.
, 2012
, “Multiobjective Hybrid Optimization and Anti-Optimization for Force Design of Tensegrity Structures
,” ASME J. Appl. Mech.
, 79
(2), p. 021015
.10.1115/1.400558022.
Qiu
, Z. P.
, and Wang
, X. J.
, 2010
, “Structural Anti-Optimization With Interval Design Parameters
,” Struct. Multidiscip. Optim.
, 41
, pp. 397
–406
.10.1007/s00158-009-0424-y23.
Zingales
, M.
, and Elishakoff
, I.
, 2000
, “Anti-Optimization Versus Probability in an Applied Mechanics Problem: Vector Uncertainty
,” ASME J. Appl. Mech.
, 67
(3
), pp. 472
–484
.10.1115/1.131353324.
Rao
, S. S.
, 2007
, Vibration of Continuous Systems
, Wiley
, New York
, pp. 333
–335
.Copyright © 2014 by ASME
You do not currently have access to this content.