In structural dynamics, energy dissipative mechanisms with nonviscous damping are characterized by their dependence on the time-history of the response velocity, which is mathematically represented by convolution integrals involving hereditary functions. The widespread Biot damping model assumes that such functions are exponential kernels, which modify the eigenvalues' set so that as many real eigenvalues (named nonviscous eigenvalues) as kernels are added to the system. This paper is focused on the study of a mathematical characterization of the nonviscous eigenvalues. The theoretical results allow the bounding of a set belonging to the real negative numbers, called the nonviscous set, constructed as the union of closed intervals. Exact analytical solutions of the nonviscous set for one and two exponential kernels and approximated solutions for the general case of N kernels are developed. In addition, the nonviscous set is used to build closed-form expressions to compute the nonviscous eigenvalues. The results are validated with numerical examples covering single and multiple degree-of-freedom systems where the proposed method is compared with other existing one-step approaches available in the literature.

References

1.
Adhikari
,
S.
,
2002
, “
Dynamics of Non-Viscously Damped Linear Systems
,”
J. Eng. Mech.
,
128
(
3
), pp.
328
339
.10.1061/(ASCE)0733-9399(2002)128:3(328)
2.
Boltzmann
,
L.
,
1878
, “
Zur theorie der elastischen nachwirkung
.”
An. Phys.
,
241
(
11
), pp.
430
432
.10.1002/andp.18782411107
3.
Gross
,
B.
,
1947
, “
On Creep and Relaxation
,”
J. Appl. Phys.
,
18
(
2
), pp.
212
221
.10.1063/1.1697606
4.
Gross
,
B.
,
1948
, “
On Creep and Relaxation. II
,”.
J. Appl. Phys.
,
19
(
3
), pp.
257
264
.10.1063/1.1715055
5.
Gross
,
B.
, and
Pelzer
,
H.
,
1951
, “
On Creep and Relaxation. III
,”
J. Appl. Phys.
,
22
(
8
), pp.
1035
1039
.10.1063/1.1700097
6.
Volterra
,
E.
,
1950
, “
Vibrations of Elastic Systems Having Hereditary Characteristic
,”
ASME J. Appl. Mech.
,
17
, pp.
363
371
.
7.
Biot
,
M.
,
1954
, “
Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena
,”
J. Appl. Phys.
,
25
(
11
), pp.
1385
1391
.10.1063/1.1721573
8.
Biot
,
M.
,
1955
, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
,
97
(
6
), pp.
1463
1469
.10.1103/PhysRev.97.1463
9.
Biot
,
M.
,
1958
, “
Linear Thermodynamics and the Mechanics of Solids
,”
Proceedings of the Third U. S. National Congress on Applied Mechanics
, Providence, RI, June 11–14,
American Society of Mechanical Engineers (ASME)
,
New York
.
10.
Bert
,
C.
,
1973
, “
Material Damping—Introductory Review of Mathematical-Models, Measures and Experimental Techniques
,”
J. Sound Vib.
,
29
(
2
), pp.
129
153
.10.1016/S0022-460X(73)80131-2
11.
Flugge
,
W.
,
1975
,
Viscoelasticity
, 2nd ed.,
Springer-Verlag
,
New York
.
12.
Nashif
,
A.
,
Jones
,
D.
, and
Henderson
,
J.
,
1985
,
Vibration Damping
,
John Wiley and Sons
,
New York
.
13.
Jones
,
D. I.
,
2001
,
Handbook of Viscoelastic Vibration Damping
,
John Wiley and Sons
,
New York
.
14.
Sun
,
C.
, and
Lu
,
Y.
,
1995
,
Vibration Damping of Structural Elements
Prentice-Hall,
Englewood Cliffs, NJ
.
15.
Golla
,
D.
, and
Hughes
,
P.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time-Domain, Finite-Element Formulation
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
897
906
.10.1115/1.3169166
16.
McTavish
,
D.
, and
Hughes
,
P.
,
1993
, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
,,
115
(
1
), pp.
103
110
.10.1115/1.2930302
17.
Lesieutre
,
G.
, and
Mingori
,
D.
,
1990
, “
Finite-Element Modeling of Frequency-Dependent Material Damping Using Augmenting Thermodynamic Fields
,”
J. Guid. Control Dyn.
,
13
(
6
), pp.
1040
1050
.10.2514/3.20577
18.
Bagley
,
R.
, and
Torvik
,
P.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.10.1122/1.549724
19.
Bagley
,
R.
, and
Torvik
,
P.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.10.2514/3.8142
20.
Bagley
,
R.
, and
Torvik
,
P.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.10.1115/1.3167615
21.
Bagley
,
R.
, and
Torvik
,
P.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
(
6
), pp.
918
925
.10.2514/3.9007
22.
Bagley
,
R.
, and
Torvik
,
P.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.10.1122/1.549887
23.
Pritz
,
T.
,
1996
, “
Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.
,
195
(
1
), pp.
103
115
.10.1006/jsvi.1996.0406
24.
Pritz
,
T.
,
1998
, “
Frequency Dependences of Complex Moduli and Complex Poisson's Ratio of Real Solid Materials
,”
J. Sound Vib.
,
214
(
1
), pp.
83
104
.10.1006/jsvi.1998.1534
25.
Pritz
,
T.
,
2001
, “
Loss Factor Peak of Viscoelastic Materials: Magnitude to Width Relations
,”
J. Sound Vib.
,
246
(
2
), pp.
265
280
.10.1006/jsvi.2001.3636
26.
Pritz
,
T.
,
2003
, “
Five-Parameter Fractional Derivative Model for Polymeric Damping Materials
,”
J. Sound Vib.
,
265
(
5
), pp.
935
952
.10.1016/S0022-460X(02)01530-4
27.
Pritz
,
T.
,
2007
, “
The Poisson's Loss Factor of Solid Viscoelastic Materials
,”
J. Sound Vib.
,
306
(
3–5
), pp.
790
802
.10.1016/j.jsv.2007.06.016
28.
Pritz
,
T.
,
2009
, “
Relation of Bulk to Shear Loss Factor of Solid Viscoelastic Materials
,”
J. Sound Vib.
,
324
(
3–5
), pp.
514
519
.10.1016/j.jsv.2009.02.003
29.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.10.1115/1.4000563
30.
Woodhouse
,
J.
,
1998
, “
Linear Damping Models For Structural Vibration
,”
J. Sound Vib.
,
215
(
3
), pp.
547
569
.10.1006/jsvi.1998.1709
31.
Muravyov
,
A.
and
Hutton
,
S.
,
1997
, “
Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
684
691
.10.1115/1.2788947
32.
Adhikari
,
S.
,
2005
, “
Qualitative Dynamic Characteristics of a Non-Viscously Damped Oscillator
,”
Proc. R. Soc. Ser. A
,
461
(
2059
), pp.
2269
2288
.10.1098/rspa.2005.1485
33.
Adhikari
,
S.
,
2008
, “
Dynamic Response Characteristics of a Nonviscously Damped Oscillator
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011003
.10.1115/1.2755096
34.
Muravyov
,
A.
, and
Hutton
,
S.
,
1998
, “
Free Vibration Response Characteristics of a Simple Elasto-Hereditary System
,”
ASME J. Vibr. Acoust.
,
120
(
2
), pp.
628
632
.10.1115/1.2893873
35.
Muller
,
P.
,
2005
, “
Are the Eigensolutions of a l-d.o.f. System With Viscoelastic Damping Oscillatory or Not?
,”
J. Sound Vib.
,
285
(
1–2
), pp.
501
509
.10.1016/j.jsv.2004.09.007
36.
Adhikari
,
S.
,
2009
, “
Experimental Identification of Generalized Proportional Viscous Damping Matrix
,”
ASME J. Vibr. Acoust.
,
131
(
1
), p.
11008
.10.1115/1.2980400
37.
Adhikari
,
S.
, and
Pascual
,
B.
,
2011
, “
Iterative Methods for Eigenvalues of Viscoelastic Systems
,”
ASME J. Vibr. Acoust.
,
133(2)
, p.
021002
.10.1115/1.4002220
38.
Lázaro
,
M.
, and
Pérez-Aparicio
,
J. L.
,
2013
, “
Multiparametric Computation of Eigenvalues for Linear Viscoelastic Structures
,”
Comput, Struct.
,
117
, pp.
67
81
.10.1016/j.compstruc.2012.12.003
39.
Lázaro
,
M.
, and
Pérez-Aparicio
,
J. L.
,
2013
, “
Dynamic Analysis of Frame Structures With Free Viscoelastic Layers: New Closed-Form Solutions of Eigenvalues and a Viscous Approach
,”
Eng. Struct.
,
54
, pp.
69
81
.10.1016/j.engstruct.2013.03.052
40.
Lázaro
,
M.
,
2013
, “
The Eigenvalue Problem in Linear Viscoelastic Structures: New Numerical Approach and the Equivalent Viscous Model
,” Ph.D. thesis,
Department Continuum Mechanics and Theory of Structures, Polytechnic University of Valencia, Valencia, Spain
.
41.
Lázaro
,
M.
,
Pérez-Aparicio
,
J. L.
, and
Epstein
,
M.
,
2012
, “
Computation of Eigenvalues in Proportionally Damped Viscoelastic Structures Based on the Fixed-Point Iteration
,”
Appl. Math. Comput.
,
219
(
8
), pp.
3511
3529
.10.1016/j.amc.2012.09.026
42.
Adhikari
,
S.
,
2001
, “
Classical Normal Modes in Non-Viscously Damped Linear Systems
,”
AIAA J.
,
39
(
5
), pp.
978
980
.10.2514/2.1490
43.
Adhikari
,
S.
, and
Pascual
,
B.
,
2009
, “
Eigenvalues of Linear Viscoelastic Systems
,”
J. Sound Vib.
,
325
(
4–5
), pp.
1000
1011
.10.1016/j.jsv.2009.04.008
44.
Lázaro
,
M.
,
Pérez-Aparicio
,
J. L.
, and
Epstein
,
M.
,
2013
, “
A Viscous Approach Based on Oscillatory Eigensolutions for Viscoelastically Damped Vibrating Systems
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp. 767–782.10.1016/j.ymssp.2013.06.005
You do not currently have access to this content.