A theoretical model is developed to investigate the mechanical behavior of closely packed carbon nanoscrolls (CNSs), the so-called CNS crystals, subjected to uniaxial lateral compression/decompression. Molecular dynamics simulations are performed to verify the model predictions. It is shown that the compression behavior of a CNS crystal can exhibit strong hysteresis that may be tuned by an applied electric field. The present study demonstrates the potential of CNSs for applications in energy-absorbing materials as well as nanodevices, such as artificial muscles, where reversible and controllable volumetric deformations are desired.

References

1.
Viculis
,
L. M.
,
Mack
,
J. J.
, and
Kaner
,
R. B.
,
2003
, “
A Chemical Route to Carbon Nanoscrolls
,”
Science
,
299
, p.
1361
.10.1126/science.1078842
2.
Xie
,
X.
,
Ju
,
L.
,
Feng
,
X.
,
Sun
,
Y.
,
Zhou
,
R.
,
Liu
,
K.
,
Fan
,
S.
,
Li
,
Q.
, and
Jiang
,
K.
,
2009
, “
Controlled Fabrication of High-Quality Carbon Nanoscrolls From Monolayer Graphene
,”
Nano Lett.
,
9
, pp.
2565
2570
.10.1021/nl900677y
3.
Savoskin
,
M. V.
,
Mochalin
,
V. M.
,
Yaroshenko
,
A. P.
,
Lazareva
,
N. I.
,
Konstantinova
,
T. E.
,
Baruskov
,
I. V.
, and
Prokofiev
,
I. G.
,
2007
, “
Carbon Nanoscrolls Produced From Acceptor-Type Graphite Intercalation Compounds
,”
Carbon
,
45
, pp.
2797
2800
.10.1016/j.carbon.2007.09.031
4.
Roy
,
D.
,
Angeles-Tactay
,
E.
,
Brown
,
R. J. C.
,
Spencer
,
S. J.
,
Fry
,
T.
,
Dunton
,
T. A.
,
Young
,
T.
, and
Milton
,
M. J. T.
,
2008
, “
Synthesis and Raman Spectroscopic Characterization of Carbon Nanoscrolls
,”
Chem. Phys. Lett.
,
465
, pp.
254
257
.10.1016/j.cplett.2008.09.044
5.
Chuvilin
,
A. L.
,
Kuznetsov
, V
. L.
, and
Obraztsov
,
A. N.
,
2009
, “
Chiral Carbon Nanoscrolls With a Polygonal Cross-Section
,”
Carbon
,
47
, pp.
3099
3105
.10.1016/j.carbon.2009.07.024
6.
Shioyama
,
H.
, and
Akita
,
T.
,
2003
, “
A New Route to Carbon Nanotubes
,”
Carbon
,
41
, pp.
179
181
.10.1016/S0008-6223(02)00278-6
7.
Chen
,
Y.
,
Lu
,
J.
, and
Gao
,
Z.
,
2007
, “
Structural and Electronic Study of Nanoscrolls Rolled Up by a Single Graphene Sheet
,”
J. Phys. Chem. C
,
111
, pp.
1625
1630
.10.1021/jp066030r
8.
Braga
,
S. F.
,
Coluci
, V
. R.
,
Legoas
,
S. B.
,
Giro
,
R.
,
Galvao
,
D. S.
, and
Baughman
,
R. H.
,
2004
, “
Structure and Dynamics of Carbon Nanoscrolls
,”
Nano Lett.
,
4
, pp.
881
884
.10.1021/nl0497272
9.
Braga
,
S. F.
,
Coluci
, V
. R.
,
Baughman
,
R. H.
, and
Galvao
,
D. S.
,
2007
, “
Hydrogen Storage in Carbon Nanoscrolls: An Atomistic Molecular Dynamics Study
,”
Chem. Phys. Lett.
,
441
, pp.
78
82
.10.1016/j.cplett.2007.04.060
10.
Coluci
, V
. R.
,
Braga
,
S. F.
,
Baughman
,
R. H.
, and
Galvao
,
D. S.
,
2007
, “
Prediction of the Hydrogen Storage Capacity of Carbon Nanoscrolls
,”
Phys. Rev. B
,
75
, p.
125404
.10.1103/PhysRevB.75.125404
11.
Mpourmpakis
,
G.
,
Tylianakis
,
E.
, and
Froudakis
,
G. E.
,
2007
, “
Carbon Nanoscrolls: A Promising Material for Hydrogen Storage
,”
Nano Lett.
,
7
, pp.
1893
1897
.10.1021/nl070530u
12.
Pan
,
H.
,
Feng
,
Y.
, and
Lin
,
J.
,
2005
, “
Ab Initio Study of Electronic and Optical Properties of Multiwall Carbon Nanotube Structures Made Up of a Single Rolled-Up Graphite Sheet
,”
Phys. Rev. B
,
72
, p.
085415
.10.1103/PhysRevB.72.085415
13.
Rurali
,
R.
,
Coluci
, V
. R.
, and
Galvao
,
D. S.
,
2006
, “
Prediction of Giant Electroactuation for Papyruslike Carbon Nanoscroll Structures: First-Principles Calculations
,”
Phys. Rev. B
,
74
, p.
085414
.10.1103/PhysRevB.74.085414
14.
Shi
,
X.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
Tunable Core Size of Carbon Nanoscrolls
,”
J. Comput. Theoret. Nanosc.
,
7
, pp.
517
521
.10.1166/jctn.2010.1387
15.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
Tunable Water Channels With Carbon Nanoscrolls
,”
Small
,
6
, pp.
739
744
.10.1002/smll.200902286
16.
Shi
,
X.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
Mechanics of Carbon Nanoscrolls: A Review
,”
Acta Mech. Solid. Sin.
,
23
(6), pp.
484
497
.
17.
Cheng
,
Y.
,
Shi
,
X.
,
Pugno
,
N. M.
and
Gao
,
H.
,
2012
, “
Substrate-Supported Carbon Nanoscroll Oscillator
,”
Physica E Low Syst. Nanost.
,
44
, pp.
955
959
.10.1016/j.physe.2011.07.016
18.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
A Translational Nanoactuator Based on Carbon Nanoscrolls on Substrates
,”
Appl. Phys. Lett.
,
96
, p.
053115
.10.1063/1.3302284
19.
Shi
,
X.
,
Pugno
,
N. M.
,
Cheng
,
Y.
, and
Gao
,
H.
,
2009
, “
Gigahertz Breathing Oscillators Based on Carbon Nanoscrolls
,”
Appl. Phys. Lett.
95
, p.
163113
.10.1063/1.3253423
20.
Zhang
,
Z.
, and
Li
,
T.
,
2011
, “
Ultrafast Nano-Oscillators Based on Interlayer-Bridged Carbon Nanoscrolls
,”
Nanosc. Res. Lett.
,
6
, p.
470
.10.1186/1556-276X-6-470
21.
Zhang
,
Z.
, and
Li
,
T.
,
2010
, “
Carbon Nanotube Initiated Formation of Carbon Nanoscrolls
,”
Appl. Phys. Lett.
,
97
, p.
081909
.10.1063/1.3479050
22.
Zhang
,
Z.
,
Huang
,
Y.
, and
Li
,
T.
,
2010
, “
Buckling Instability of Carbon Nanoscrolls
,”
J. Appl. Phys.
,
112
, p.
063515
.10.1063/1.4754312
23.
Huang
,
Y.
, and
Li
,
T.
,
2013
, “
Molecular Mass Transport Via Carbon Nanoscrolls
,”
ASME J. Appl. Mech.
,
80
(4), p.
041038
.10.1115/1.4024167
24.
Shi
,
X.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2011
, “
Constitutive Behavior of Pressurized Carbon Nanoscrolls
,”
Int. J. Fract.
,
171
, pp.
163
168
.10.1007/s10704-010-9545-y
25.
Pugno
,
N. M.
,
2010
, “
The Design of Self-Collapsed Super-Strong Nanotube Bundles
,”
J. Mech. Phys. Solid.
,
58
, pp.
1397
1410
.10.1016/j.jmps.2010.05.007
26.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
, pp.
6472
6486
.10.1063/1.481208
27.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
28.
Elliott
,
J. A.
,
Sandler
,
J. K. W.
,
Windle
,
A. H.
,
Young
,
R. J.
, and
Shaffer
,
M. S. P.
,
2004
, “
Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent
,”
Phys. Rev. Lett.
,
92
, p.
095501
.10.1103/PhysRevLett.92.095501
29.
Tang
,
T.
,
Jagota
,
A.
,
Hui
,
C. Y.
, and
Glassmaker
,
N. J.
,
2005
, “
Collapse of Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
97
, p.
074310
.10.1063/1.1883302
30.
Liu
,
B.
,
Yu
,
M. F.
, and
Huang
,
Y.
,
2004
, “
Role of Lattice Registry in the Full Collapse and Twist Formation of Carbon Nanotubes
,”
Phys. Rev. B
,
70
, p.
161402
.10.1103/PhysRevB.70.161402
31.
Xiao
,
J.
,
Liu
,
B.
,
Huang
,
Y.
,
Zuo
,
J.
,
Hwang
,
K.-C.
, and
Yu
,
M.-F.
,
2007
, “
Collapse and Stability of Single- and Multi-Wall Carbon Nanotubes
,”
Nanotechnology
,
18
(39), p.
359703
.10.1088/0957-4484/18/39/395703
32.
Liu
,
J.
,
2012
, “
Explicit Solutions for a SWCNT Collapse
,”
Arch. Appl. Mech.
,
82
, pp.
767
776
.10.1007/s00419-011-0589-x
You do not currently have access to this content.