A theoretical model is developed to investigate the mechanical behavior of closely packed carbon nanoscrolls (CNSs), the so-called CNS crystals, subjected to uniaxial lateral compression/decompression. Molecular dynamics simulations are performed to verify the model predictions. It is shown that the compression behavior of a CNS crystal can exhibit strong hysteresis that may be tuned by an applied electric field. The present study demonstrates the potential of CNSs for applications in energy-absorbing materials as well as nanodevices, such as artificial muscles, where reversible and controllable volumetric deformations are desired.
Issue Section:
Research Papers
References
1.
Viculis
, L. M.
, Mack
, J. J.
, and Kaner
, R. B.
, 2003
, “A Chemical Route to Carbon Nanoscrolls
,” Science
, 299
, p. 1361
.10.1126/science.10788422.
Xie
, X.
, Ju
, L.
, Feng
, X.
, Sun
, Y.
, Zhou
, R.
, Liu
, K.
, Fan
, S.
, Li
, Q.
, and Jiang
, K.
, 2009
, “Controlled Fabrication of High-Quality Carbon Nanoscrolls From Monolayer Graphene
,” Nano Lett.
, 9
, pp. 2565
–2570
.10.1021/nl900677y3.
Savoskin
, M. V.
, Mochalin
, V. M.
, Yaroshenko
, A. P.
, Lazareva
, N. I.
, Konstantinova
, T. E.
, Baruskov
, I. V.
, and Prokofiev
, I. G.
, 2007
, “Carbon Nanoscrolls Produced From Acceptor-Type Graphite Intercalation Compounds
,” Carbon
, 45
, pp. 2797
–2800
.10.1016/j.carbon.2007.09.0314.
Roy
, D.
, Angeles-Tactay
, E.
, Brown
, R. J. C.
, Spencer
, S. J.
, Fry
, T.
, Dunton
, T. A.
, Young
, T.
, and Milton
, M. J. T.
, 2008
, “Synthesis and Raman Spectroscopic Characterization of Carbon Nanoscrolls
,” Chem. Phys. Lett.
, 465
, pp. 254
–257
.10.1016/j.cplett.2008.09.0445.
Chuvilin
, A. L.
, Kuznetsov
, V. L.
, and Obraztsov
, A. N.
, 2009
, “Chiral Carbon Nanoscrolls With a Polygonal Cross-Section
,” Carbon
, 47
, pp. 3099
–3105
.10.1016/j.carbon.2009.07.0246.
Shioyama
, H.
, and Akita
, T.
, 2003
, “A New Route to Carbon Nanotubes
,” Carbon
, 41
, pp. 179
–181
.10.1016/S0008-6223(02)00278-67.
Chen
, Y.
, Lu
, J.
, and Gao
, Z.
, 2007
, “Structural and Electronic Study of Nanoscrolls Rolled Up by a Single Graphene Sheet
,” J. Phys. Chem. C
, 111
, pp. 1625
–1630
.10.1021/jp066030r8.
Braga
, S. F.
, Coluci
, V. R.
, Legoas
, S. B.
, Giro
, R.
, Galvao
, D. S.
, and Baughman
, R. H.
, 2004
, “Structure and Dynamics of Carbon Nanoscrolls
,” Nano Lett.
, 4
, pp. 881
–884
.10.1021/nl04972729.
Braga
, S. F.
, Coluci
, V. R.
, Baughman
, R. H.
, and Galvao
, D. S.
, 2007
, “Hydrogen Storage in Carbon Nanoscrolls: An Atomistic Molecular Dynamics Study
,” Chem. Phys. Lett.
, 441
, pp. 78
–82
.10.1016/j.cplett.2007.04.06010.
Coluci
, V. R.
, Braga
, S. F.
, Baughman
, R. H.
, and Galvao
, D. S.
, 2007
, “Prediction of the Hydrogen Storage Capacity of Carbon Nanoscrolls
,” Phys. Rev. B
, 75
, p. 125404
.10.1103/PhysRevB.75.12540411.
Mpourmpakis
, G.
, Tylianakis
, E.
, and Froudakis
, G. E.
, 2007
, “Carbon Nanoscrolls: A Promising Material for Hydrogen Storage
,” Nano Lett.
, 7
, pp. 1893
–1897
.10.1021/nl070530u12.
Pan
, H.
, Feng
, Y.
, and Lin
, J.
, 2005
, “Ab Initio Study of Electronic and Optical Properties of Multiwall Carbon Nanotube Structures Made Up of a Single Rolled-Up Graphite Sheet
,” Phys. Rev. B
, 72
, p. 085415
.10.1103/PhysRevB.72.08541513.
Rurali
, R.
, Coluci
, V. R.
, and Galvao
, D. S.
, 2006
, “Prediction of Giant Electroactuation for Papyruslike Carbon Nanoscroll Structures: First-Principles Calculations
,” Phys. Rev. B
, 74
, p. 085414
.10.1103/PhysRevB.74.08541414.
Shi
, X.
, Pugno
, N. M.
, and Gao
, H.
, 2010
, “Tunable Core Size of Carbon Nanoscrolls
,” J. Comput. Theoret. Nanosc.
, 7
, pp. 517
–521
.10.1166/jctn.2010.138715.
Shi
, X.
, Cheng
, Y.
, Pugno
, N. M.
, and Gao
, H.
, 2010
, “Tunable Water Channels With Carbon Nanoscrolls
,” Small
, 6
, pp. 739
–744
.10.1002/smll.20090228616.
Shi
, X.
, Pugno
, N. M.
, and Gao
, H.
, 2010
, “Mechanics of Carbon Nanoscrolls: A Review
,” Acta Mech. Solid. Sin.
, 23
(6), pp. 484
–497
.17.
Cheng
, Y.
, Shi
, X.
, Pugno
, N. M.
and Gao
, H.
, 2012
, “Substrate-Supported Carbon Nanoscroll Oscillator
,” Physica E Low Syst. Nanost.
, 44
, pp. 955
–959
.10.1016/j.physe.2011.07.01618.
Shi
, X.
, Cheng
, Y.
, Pugno
, N. M.
, and Gao
, H.
, 2010
, “A Translational Nanoactuator Based on Carbon Nanoscrolls on Substrates
,” Appl. Phys. Lett.
, 96
, p. 053115
.10.1063/1.330228419.
Shi
, X.
, Pugno
, N. M.
, Cheng
, Y.
, and Gao
, H.
, 2009
, “Gigahertz Breathing Oscillators Based on Carbon Nanoscrolls
,” Appl. Phys. Lett.
95
, p. 163113
.10.1063/1.325342320.
Zhang
, Z.
, and Li
, T.
, 2011
, “Ultrafast Nano-Oscillators Based on Interlayer-Bridged Carbon Nanoscrolls
,” Nanosc. Res. Lett.
, 6
, p. 470
.10.1186/1556-276X-6-47021.
Zhang
, Z.
, and Li
, T.
, 2010
, “Carbon Nanotube Initiated Formation of Carbon Nanoscrolls
,” Appl. Phys. Lett.
, 97
, p. 081909
.10.1063/1.347905022.
Zhang
, Z.
, Huang
, Y.
, and Li
, T.
, 2010
, “Buckling Instability of Carbon Nanoscrolls
,” J. Appl. Phys.
, 112
, p. 063515
.10.1063/1.475431223.
Huang
, Y.
, and Li
, T.
, 2013
, “Molecular Mass Transport Via Carbon Nanoscrolls
,” ASME J. Appl. Mech.
, 80
(4), p. 041038
.10.1115/1.402416724.
Shi
, X.
, Pugno
, N. M.
, and Gao
, H.
, 2011
, “Constitutive Behavior of Pressurized Carbon Nanoscrolls
,” Int. J. Fract.
, 171
, pp. 163
–168
.10.1007/s10704-010-9545-y25.
Pugno
, N. M.
, 2010
, “The Design of Self-Collapsed Super-Strong Nanotube Bundles
,” J. Mech. Phys. Solid.
, 58
, pp. 1397
–1410
.10.1016/j.jmps.2010.05.00726.
Stuart
, S. J.
, Tutein
, A. B.
, and Harrison
, J. A.
, 2000
, “A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,” J. Chem. Phys.
, 112
, pp. 6472
–6486
.10.1063/1.48120827.
Plimpton
, S.
, 1995
, “Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,” J. Comput. Phys.
, 117
, pp. 1
–19
.10.1006/jcph.1995.103928.
Elliott
, J. A.
, Sandler
, J. K. W.
, Windle
, A. H.
, Young
, R. J.
, and Shaffer
, M. S. P.
, 2004
, “Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent
,” Phys. Rev. Lett.
, 92
, p. 095501
.10.1103/PhysRevLett.92.09550129.
Tang
, T.
, Jagota
, A.
, Hui
, C. Y.
, and Glassmaker
, N. J.
, 2005
, “Collapse of Single-Walled Carbon Nanotubes
,” J. Appl. Phys.
, 97
, p. 074310
.10.1063/1.188330230.
Liu
, B.
, Yu
, M. F.
, and Huang
, Y.
, 2004
, “Role of Lattice Registry in the Full Collapse and Twist Formation of Carbon Nanotubes
,” Phys. Rev. B
, 70
, p. 161402
.10.1103/PhysRevB.70.16140231.
Xiao
, J.
, Liu
, B.
, Huang
, Y.
, Zuo
, J.
, Hwang
, K.-C.
, and Yu
, M.-F.
, 2007
, “Collapse and Stability of Single- and Multi-Wall Carbon Nanotubes
,” Nanotechnology
, 18
(39), p. 359703
.10.1088/0957-4484/18/39/39570332.
Liu
, J.
, 2012
, “Explicit Solutions for a SWCNT Collapse
,” Arch. Appl. Mech.
, 82
, pp. 767
–776
.10.1007/s00419-011-0589-xCopyright © 2014 by ASME
You do not currently have access to this content.