A complete set of potential functions consisting of three scalar functions is presented for coupled displacement-temperature equations of motion and heat equation for an arbitrary x3-convex domain containing a linear thermoelastic transversely isotropic material, where the x3-axis is parallel to the axis of symmetry of the material. The proof of the completeness theorem is based on a retarded logarithmic potential function, retarded Newtonian potential function, repeated wave equation, the extended Boggio's theorem for the transversely isotropic axially convex domain, and the existence of a solution for the heat equation. It is shown that the solution degenerates to a set of complete potential functions for elastodynamics and elastostatics under certain conditions. In a special case, the number of potential functions is reduced to one, and the required conditions are discussed. Another special case involves the rotationally symmetric configuration with respect to the axis of symmetry of the material.

References

1.
Eubanks
,
R. A.
, and
Sternberg
,
E.
,
1954
, “
On the Axisymmetric Problem of Elasticity Theory for a Medium With Transverse Isotropy
,”
J. Rat. Mech. Anal.
,
3
, pp.
89
101
.
2.
Gurtin
,
M. E.
,
1972
,
The Linear Theory of Elasticity, Mechanics of Solids II
,
C. A.
Truesdell
, ed.,
Springer-Verlag
,
Berlin
, pp.
1
295
.
3.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
Dover Publications Inc.
,
New York
.
4.
Michell
,
J. H.
,
1900
, “
The Stress in an Aeolotropic Elastic Solid With an Infinite Plane Boundary
,”
Proc. London Math. Soc.
,
32
, pp.
247
258
.10.1112/plms/s1-32.1.247
5.
Elliott
,
H. A.
,
1948
, “
Three Dimensional Stress Distribution in Hexagonal Aeolotropic Crystals
,”
Proc. Cambridge Philos. Soc.
,
44
(
4
), pp.
522
533
.10.1017/S0305004100024531
6.
Hu
,
H. C.
,
1953
, “
On the Three Dimensional Problems of the Theory of Elasticity of a Transversely Isotropic Body
,”
Acad. Sci. Sin.
,
2
, pp.
145
151
.
7.
Nowacki
,
W.
,
1954
, “
The Stress Function in Three Dimensional Problems Concerning an Elastic Body Characterized by Transversely Isotropy
,”
Bull. Acad. Pol. Sci.
,
2
, pp.
21
25
.
8.
Lekhnitskii
,
S. G.
,
1981
,
Theory of Elasticity of an Anisotropic Body
,
Mir
,
Moscow
.
9.
Eskandari-Ghadi
,
M.
,
2005
, “
A Complete Solution of the Wave Equations for Transversely Isotropic Media
,”
J. Elasticity
,
81
, pp.
1
19
.10.1007/s10659-005-9000-x
10.
Eskandari-Ghadi
,
M.
, and
Pak
,
R. Y. S.
,
2009
, “
Axisymmetric Body-Force Fields in Elastodynamics of Transversely Isotropic Media
,”
ASME J. Appl. Mech.
,
76
, p.
061016
.10.1115/1.3130866
11.
Wang
,
M. Z.
, and
Wang
,
W.
,
1995
, “
Completeness and Nonuniqueness of General Solutions of Transversely Isotropic Elasticity
,”
Int. J. Solids Struct.
,
32
, pp.
501
513
.10.1016/0020-7683(94)00114-C
12.
Lodge
,
A. S.
,
1955
, “
The Transformation to Isotropic Form of the Equilibrium Equations for a Class of Anisotropic Elastic Solids
,”
Q. J. Mech. Appl. Math.
,
8
, pp.
211
225
.10.1093/qjmam/8.2.211
13.
Carlson
,
D. E.
,
1972
,
Linear Thermoelasticity, Mechanics of Solids II
,
C. A.
Truesdell
, ed.,
Springer-Verlag
,
Berlin
, pp.
297
345
.
14.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elasticity
,
31
, pp.
189
208
.10.1007/BF00044969
15.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1991
, “
A Re-Examination of the Basic Postulates of Thermomechanics
,”
Proc. R. Soc. London, Ser. A
,
432
, pp.
171
194
.10.1098/rspa.1991.0012
16.
Biot
,
M. A.
,
1954
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
,
26
, pp.
182
185
.10.1063/1.1721956
17.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
, pp.
240
253
.10.1063/1.1722351
18.
Deresiewicz
,
H.
,
1958
, “
Solution of the Equations of Thermoelasticity
,”
Proceedings of the 3rd U.S. National Congress of Theoretical and Applied Mechanics, Brown University
, Providence, RI, June 11–14, pp.
287
291
.
19.
Zorski
,
H.
,
1958
, “
Singular Solutions for Thermoelastic Media
,”
Bull. Acad. Pol. Sci.
,
6
, pp.
331
339
.
20.
Nowacki
,
W.
,
1967
, “
On the Completeness of Stress Functions in Thermoelasticity
,”
Bull. Acad. Pol. Sci.
,
15
, pp.
583
591
.
21.
Eubanks
,
R. A.
, and
Sternberg
,
E.
,
1956
, “
On the Completeness of the Boussinesq-Papkovich Stress Functions
,”
J. Rat. Mech. Anal.
,
5
, pp.
735
746
.
22.
Mindlin
,
R. D.
,
1963
, “
Note on the Galerkin and Papkovich Stress Functions
,”
Bull. Am. Math. Soc.
,
42
, pp.
373
376
.10.1090/S0002-9904-1936-06304-4
23.
Sternberg
,
E.
, and
Eubanks
,
R. A.
,
1957
, “
On Stress Functions for Elastokinetics and the Integration of the Repeated Wave Equation
,”
Q. Appl. Math.
,
15
, pp.
149
153
.
24.
Truesdell
,
C. A.
,
1959
, “
Invariant and Complete Stress Functions for General Continua
,”
Arch. Rat. Mech. Anal.
,
4
, pp.
1
29
.10.1007/BF00281376
25.
Sternberg
,
E.
,
1960
, “
On the Integration of the Equation of Motion in the Classical Theory of Elasticity
,”
Arch. Rat. Mech. Anal.
,
6
, pp.
34
50
.10.1007/BF00276152
26.
Sternberg
,
E.
,
1960
, “
On Some Recent Developments in the Linear Theory of Elasticity
,”
Structural Mechanics
,
Goodier
and
Hoff
, eds.,
Pergamon Press, Inc.
,
Elmsford, NY
.
27.
Sternberg
,
E.
, and
Gurtin
,
M. E.
,
1962
, “
On the Completeness of Certain Stress Functions in the Linear Theory of Elasticity
,”
Proceedings of the Fourth U.S. National Congress on Applied Mechanics
, Berkeley, CA, June 18–21, pp.
793
797
.
28.
Gurtin
,
M. E.
,
1962
, “
On Helmholtz's Theorem and the Completeness of the Papkovich-Neuber Stress Functions for Infinite Domains
,”
Arch. Rat. Mech. Anal.
,
9
, pp.
225
233
.10.1007/BF00253346
29.
Stippes
,
M.
,
1969
, “
Completeness of Papkovich Potentials
,”
Q. Appl. Math.
,
26
, pp.
477
483
.
30.
Carlson
,
D. E.
,
1983
, “
A Note on the Solutions of Boussinesq, Love, and Maeguerre in Axisymmetric Elasticity
,”
J. Elasticity
,
13
, pp.
345
349
.10.1007/BF00043001
31.
Tran-Cong
,
T.
,
1989
, “
On the Completeness of the Papkovich-Neuber Solution
,”
Q. Appl. Math.
,
47
, pp.
645
659
.
32.
Tran-Cong
,
T.
,
1995
, “
On the Completeness and Uniqueness of Papkovich-Neuber and the Non-Axisymmetric Boussinesq, Love and Burgatti Solutions in General Cylindrical Coordinates
,”
J. Elasticity
,
36
, pp.
227
255
.10.1007/BF00040849
33.
Pak
,
R. Y. S.
, and
Eskandari-Ghadi
,
M.
,
2007
, “
On the Completeness of a Method of Potentials in Elastodynamics
,”
Q. Appl. Math.
,
65
, pp.
789
797
.
34.
Eskandari-Ghadi
,
M.
, and
Pak
,
R. Y. S.
,
2008
, “
Elastodynamics and Elastostatics by a Unified Method of Potentials
,”
J. Elasticity
,
92
, pp.
187
194
.10.1007/s10659-008-9156-2
35.
Verruijt
,
A.
,
1969
, “
The Completeness of Biot’s Solution of the Coupled Thermoelastic Problem
,”
Q. Appl. Math.
,
26
, pp.
485
490
.
36.
Kellogg
,
O. D.
,
1953
,
Foundation of Potential Theory
,
Dover Publications Inc.
,
New York
.
37.
Phillips
,
H. B.
,
1933
,
Vector Analysis
,
John Wiley & Sons Inc.
,
New York
.
38.
Morse
,
P. M.
, and
Feshbach
,
H.
,
1953
,
Methods of Theoretical Physics
,
McGraw-Hill Book Company Inc.
,
New York
.
39.
Raoofian Naeeni
,
M.
,
Eskandari-Ghadi
,
M.
,
Ardalan
,
A. A.
,
Rahimian
,
M.
, and
Hayati
,
Y.
,
2013
, “
Analytical Solution of Coupled Thermoelastic Axisymmetric Transient Waves in a Transversely Isotropic Half-Space
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
024502
.10.1115/1.4007786
40.
Pekeris
,
C. L.
,
1955
, “
The Seismic Surface Pulse
,”
Proc. Natl. Acad. Sci. USA
,
41
, pp.
629
639
.10.1073/pnas.41.9.629
41.
Fedorov
,
F. I.
,
1968
,
Theory of Elastic Waves in Crystals
,
Plenum Press
,
New York
.
42.
Apostol
,
T. M.
,
1957
,
Mathematical Analysis: A Modern Approach to Advanced Calculus
,
Addison-Wesley Publishing Company Inc.
,
Boston, MA
.
You do not currently have access to this content.